Skip to main content
Log in

Theoretical and discrete element simulation studies of aircraft landing impact

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

A soft landing directly influences the safety of devices and the follow-on work of a lander. Therefore, research on the interaction between the lander and the lunar regolith is of great significance. Different from the regular test experiments and finite element simulation, the landing impact is studied in a manner that combines a theoretical method and a discrete element simulation based on EDEM, which is more suitable for the simulation of the discrete particles due to the discontinuous properties of lunar regolith. Based on the properties of the lunar regolith and discrete element theory, this paper establishes the theoretical model and the discrete element model of the interaction between the lander and the lunar regolith. The influence of the lander structure and the lunar terrain on this interaction is analyzed through contrastive analysis of different work conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

References

  1. Behm H (1967) Results of The Ranger, Lunar 9, and Surveyor 1 missions. J Astronaut Sci 14:101

    Google Scholar 

  2. Christensen EM, Batterson SA, Benson HE et al (1967) Lunar surface mechanical properties at the landing site of Surveyor 3. J Geophys Res Atmos 72(2):801–813

    Article  Google Scholar 

  3. Papanastassiou DA, Wasserburg GJ (1971) Lunar chronology and evolution from Rb, Sr studies of Apollo 11 and 12 samples. Earth Planet Sci Lett 11(1–5):37–62

    Article  Google Scholar 

  4. Dalrymple GB, Ryder G (1996) Argon-40/argon-39 age spectra of Apollo 17 highlands breccia samples by laser step heating and the age of the Serenitatis basin. J Geophys Res 101(E11):26069–26084

    Article  Google Scholar 

  5. Ding L (2007) Institutional design and key technology research on the buffer mechanism of Lunar probe. Harbin Institute of Technology, Harbin

    Google Scholar 

  6. Ulesse JB (1969) Full-scale dynamic landing-impact investigation of a prototype lunar module landing gear. NASA TN D-5029

  7. Benson HE (1970) Land and impact of the Apollo command module. AIAA-70-1165

  8. Chen J, Nie H, Zhao J, Bai H, Bo W (2008) Performance analysis of buffer gear of lunar lander. Acta Astronaut 32(3):30–42

    Google Scholar 

  9. Ling DS, Jiang ZJ, Zhong SY et al (2013) Numerical study on impact of lunar lander footpad against simulant lunar soil. J Zhejiang Univ 47(7):1171–1177

    Google Scholar 

  10. Ling DS, Jiang ZJ, Cai WJ et al (2013) Experimental study of sliding forces of lander footpad in simulant lunar soil. Rock Soil Mech 34(7):1847–1853

    Google Scholar 

  11. Cundall PA (1971) A computer model for simulating progressive, large-scale movements in blocky rock systems. Proc Int Symp Rock Fracture 1(ii-b):11–8

    Google Scholar 

  12. Meguro K, Hakuno M (2010) Fracture analyses of concrete structures by the modified distinct element method. Doboku Gakkai Ronbunshu 410:113–124

    Google Scholar 

  13. Meguro K, Hatem TD (2000) Applied element method for structural analysis: theory and application for linear materials. 647:31–45. Jetty.ecn.purdue.edu

  14. Cui J, Hou X, Deng Z et al (2017) Prediction of the temperature of a drill in drilling lunar rock simulant in a vacuum. Therm Sci 2015(00):51

    Google Scholar 

  15. Hou XY, Cui JS, Zhao DM et al (2014) Thermal test of lunar rock drill bit in vacuum environment. Appl Mech Mater 475–476(475–476):38–44

    Google Scholar 

  16. Cui J (2016) Research on mechanical-thermotics characteristics of drill-lunar regolith interaction and prediction of the temperature field. Harbin Institute of Technology, Harbin

    Google Scholar 

  17. Shen Y, Hou X, Qin Y et al (2014) Shape of mole nose providing minimum axial resistance. Robot Biomim 1(1):10

    Article  Google Scholar 

  18. Shen Y, Hou X, Zhang K et al (2017) Study on the dynamic characteristics of a hammer-driven-type penetrators in the penetration process. Adv Mech Eng 9(3):168781401769411

    Article  Google Scholar 

  19. Iturrioz I, Miguel LFF, Riera JD (2009) Dynamic fracture analysis of concrete or rock plates by means of the discrete element method. Latin Am J Solids Struct 6(3):229–245

    Google Scholar 

  20. Riera JD, Miguel LFF, Iturrioz I (2011) Strength of brittle materials under high strain rates in DEM simulations. Comput Model Eng Sci 82(2):113–136

    Google Scholar 

  21. Riera JD, Miguel LFF, Iturrioz I (2014) Assessment of Brazilian tensile test by means of the truss-like discrete element method (DEM) with imperfect mesh. Eng Struct 81:10–21

    Article  Google Scholar 

  22. Iturrioz I, Riera JD, Miguel LFF (2014) Introduction of imperfections in the cubic mesh of the truss-like discrete element method. Fatigue Fract Eng Mater Struct 37(5):539–552

    Article  Google Scholar 

  23. Kosteski LE, Riera JD, Iturrioz I et al (2015) Analysis of reinforced concrete plates subjected to impact employing the truss-like discrete element method. Fatigue Fract Eng Mater Struct 38(3):276–289

    Article  Google Scholar 

  24. Bekkar MG (1969) Introduction to terrain-vehicle systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  25. Oravec HA, Zeng X, Asnani VM (2010) Design and characterization of GRC-1: a soil for lunar terramechanics testing in Earth-ambient conditions. J Terrramech 47(6):361–377

    Article  Google Scholar 

  26. Zou M, Jian-Qiao LI, Liu GM et al (2011) Experimental study of terra-mechanics characters of simulant lunar soil. Rock Soil Mech 32(4):1057–1061

    Google Scholar 

  27. Willman BM, Boles WW, Mckay DS et al (1995) Properties of lunar soil simulant JSC-1. Int J Rock Mech Min Sci Geomech Abstr 33(1):13A

    Google Scholar 

  28. Oravec B (2009) Understanding mechanical behavior of lunar soils for the study of vehicle mobility. Dissertations and Theses, Gradworks

  29. Heiken GH, Vaniman DT, French BM (1991) Lunar sourcebook—a user’s guide to the moon. Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (Grant Nos. 51505028, 51575123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbin Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Technical Editor: André Cavalieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, X., Xue, P., Wang, Y. et al. Theoretical and discrete element simulation studies of aircraft landing impact. J Braz. Soc. Mech. Sci. Eng. 40, 115 (2018). https://doi.org/10.1007/s40430-018-0983-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-0983-1

Keywords

Navigation