Interlayer effects of Van der Waals interactions on transverse vibrational behavior of bilayer graphene sheets

  • Kamran Kamali
  • Reza Nazemnezhad
  • Mojtaba Zare
Technical Paper


This study focuses only on the interlayer effects of van der Waals (VdWs) interactions (including simultaneous effects of shear and tensile-compressive effects) on the free transverse vibrational behavior of bilayer graphene sheets by implementing the classical continuum mechanics theory. To this end, the classical sandwich plate theory and the Hamilton’s principle are involved to obtain the governing equations and the harmonic differential quadrature method is employed to calculate the natural frequencies and related mode shapes. The results show the shear effect of VdWs interactions has significant influences on primary natural frequencies and mode shapes. Therefore it is a main determinant and can safely assume the pure shear effect while designing sensors, actuators, accelerometers and resonators. Finally, the potential depth parameter is introduced to consider the simultaneous effects of shear and tensile-compressive forces.


Free vibration Bilayer graphene sheet Van der Waals forces Harmonic differential quadrature method Equivalent forces 


  1. 1.
    Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145. CrossRefGoogle Scholar
  2. 2.
    Siochi EJ (2014) Graphene in the sky and beyond. Nat Nanotechnol 9:745–747. CrossRefGoogle Scholar
  3. 3.
    Avouris P (2010) Graphene: electronic and photonic properties and devices. Nano Lett 10:4285–4294CrossRefGoogle Scholar
  4. 4.
    Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581CrossRefGoogle Scholar
  5. 5.
    Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM et al (2007) Electromechanical resonators from graphene sheets. Science 315:490–493. CrossRefGoogle Scholar
  6. 6.
    Aksencer T, Aydogdu M (2011) Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory. Physica E 43:954–959CrossRefGoogle Scholar
  7. 7.
    Ansari R, Arash B, Rouhi H (2011) Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity. Compos Struct 93:2419–2429CrossRefGoogle Scholar
  8. 8.
    Ansari R, Sahmani S (2013) Prediction of biaxial buckling behavior of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations. Appl Math Model 37:7338–7351MathSciNetCrossRefGoogle Scholar
  9. 9.
    Arani AG, Haghparast E, Zarei HB (2016) Nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-Pasternak foundation under longitudinal magnetic field. Physica B 495:35–49CrossRefGoogle Scholar
  10. 10.
    Farajpour A, Shahidi AR, Mohammadi M, Mahzoon M (2012) Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics. Compos Struct 94:1605–1615CrossRefGoogle Scholar
  11. 11.
    He XQ, Kitipornchai S, Liew KM (2005) Resonance analysis of multi-layered graphene sheets used as nanoscale resonators. Nanotechnology 16:2086CrossRefGoogle Scholar
  12. 12.
    He XQQ, Wang JBB, Liu B, Liew KMKM (2012) Analysis of nonlinear forced vibration of multi-layered graphene sheets. Comput Mater Sci 61:194–199. CrossRefGoogle Scholar
  13. 13.
    Jomehzadeh E, Saidi AR (2011) A study on large amplitude vibration of multilayered graphene sheets. Comput Mater Sci 50:1043–1051. CrossRefGoogle Scholar
  14. 14.
    Lin RM (2012) Nanoscale vibration characteristics of multi-layered graphene sheets. Mech Syst Sign Process 29:251–261. CrossRefGoogle Scholar
  15. 15.
    Lin RM (2012) Nanoscale vibration characterization of multi-layered graphene sheets embedded in an elastic medium. Comput Mater Sci 53:44–52. CrossRefGoogle Scholar
  16. 16.
    Mohammadi M, Farajpour A, Moradi A, Ghayour M (2014) Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment. Compos B Eng 56:629–637CrossRefGoogle Scholar
  17. 17.
    Mohammadi M, Goodarzi M, Ghayour M, Farajpour A (2013) Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory. Compos B Eng 51:121–129CrossRefGoogle Scholar
  18. 18.
    Murmu T, Adhikari S (2011) Nonlocal vibration of bonded double-nanoplate-systems. Compos B Eng 42:1901–1911. CrossRefGoogle Scholar
  19. 19.
    Murmu T, Pradhan SC (2009) Small-scale effect on the free in-plane vibration of nanoplates by nonlocal continuum model. Physica E 41:1628–1633. CrossRefGoogle Scholar
  20. 20.
    Narendar S, Gopalakrishnan S (2012) Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory. Acta Mech 223:395–413MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Nazemnezhad R (2015) Nonlocal Timoshenko beam model for considering shear effect of van der Waals interactions on free vibration of multilayer graphene nanoribbons. Compos Struct 133:522–528CrossRefGoogle Scholar
  22. 22.
    Nazemnezhad R, Hosseini-Hashemi S (2014) Free vibration analysis of multi-layer graphene nanoribbons incorporating interlayer shear effect via molecular dynamics simulations and nonlocal elasticity. Phys Lett A 378:3225–3232. MathSciNetCrossRefGoogle Scholar
  23. 23.
    Nazemnezhad R, Shokrollahi H, Hosseini-Hashemi S (2014) Sandwich beam model for free vibration analysis of bilayer graphene nanoribbons with interlayer shear effect. J Appl Phys 115:174303. CrossRefGoogle Scholar
  24. 24.
    Nazemnezhad R, Zare M (2016) Nonlocal Reddy beam model for free vibration analysis of multilayer nanoribbons incorporating interlayer shear effect. Eur J Mech A Solids 55:234–242. MathSciNetCrossRefGoogle Scholar
  25. 25.
    Pouresmaeeli S, Fazelzadeh SA, Ghavanloo E (2012) Exact solution for nonlocal vibration of double-orthotropic nanoplates embedded in elastic medium. Compos Part B Eng 43:3384–3390. CrossRefGoogle Scholar
  26. 26.
    Shen Z-B, Tang H-L, Li D-K, Tang G-J (2012) Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory. Comput Mater Sci 61:200–205CrossRefGoogle Scholar
  27. 27.
    Ansari R, Arash B, Rouhi H (2011) Nanoscale vibration analysis of embedded multi-layered graphene sheets under various boundary conditions. Comput Mater Sci 50:3091–3100CrossRefGoogle Scholar
  28. 28.
    Robertson DH, Brenner DW, Mintmire JW (1992) Energetics of nanoscale graphitic tubules. Phys Rev B 45:12592CrossRefGoogle Scholar
  29. 29.
    Lu JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79:10MathSciNetCrossRefGoogle Scholar
  30. 30.
    Jin Y, Yuan FG (2003) Simulation of elastic properties of single-walled carbon nanotubes. Compos Sci Technol 63:1507–1515CrossRefGoogle Scholar
  31. 31.
    Striz AG, Wang X, Bert CW (1995) Harmonic differential quadrature method and applications to analysis of structural components. Acta Mech 111:85–94. CrossRefMATHGoogle Scholar
  32. 32.
    Shu C (2000) Differential quadrature and its application in engineering. Springer, LondonCrossRefMATHGoogle Scholar
  33. 33.
    Kordkheili SAH, Moshrefzadeh-Sani H (2013) Mechanical properties of double-layered graphene sheets. Comput Mater Sci 69:335–343. CrossRefGoogle Scholar
  34. 34.
    Nazemnezhad R, Zare M, Hosseini-Hashemi S, Shokrollahi H (2016) Molecular dynamics simulation for interlayer interactions of graphene nanoribbons with multiple layers. Superlattices Microstruct 98:228–234CrossRefGoogle Scholar
  35. 35.
    Van Lier G, Van Alsenoy C, Van Doren V, Geerlings P (2000) Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem Phys Lett 326:181–185. CrossRefGoogle Scholar
  36. 36.
    Politano A, Chiarello G (2015) Probing the Young’s modulus and Poisson’s ratio in graphene/metal interfaces and graphite: a comparative study. Nano Res 8:1847–1856CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringIran University of Science and TechnologyTehranIran
  2. 2.Department of DesignFateh Sanat Kimia CompanyShirazIran
  3. 3.School of EngineeringDamghan UniversityDamghanIran
  4. 4.Department of Mechanical and Manufacturing EngineeringSchulich School of Engineering, University of CalgaryCalgaryCanada

Personalised recommendations