A study on fish eggs and larvae drifting in the Jirau reservoir, Brazilian Amazon

  • Maria de Lourdes Cavalcanti Barros
  • Paulo Cesar Colonna Rosman
Technical Paper
  • 26 Downloads

Abstract

Jirau hydropower plant (Jirau HPP) is one of the largest scale run-of-river hydro-projects in the Madeira River, Brazilian Amazon. This project has attracted strong national and international attention, especially with respect to environmental issues, because the Madeira River supports a diverse fish species. Many of these are migratory species and impact the reproductive stocks of the fishes that live in the Amazon River. Numerical simulations to predict fish eggs and larvae drift have been scarce in hydropower plant studies in the Amazonian rivers. In this paper, we investigate the fish eggs and larvae drifting behavior in the backwater of the Jirau HPP. The model used simulates the fish eggs as passive particles, and adopts a second-order Lagrangian scheme coupled with a hydrodynamic model of SisBaHiA. The results obtained show that the transport of fish eggs in the Jirau reservoir is controlled mainly by hydrodynamic and the morphology of the run-of-river reservoir and that the fish eggs and larvae in the reservoir have a short residence time, and that the drift is continuing and unhindered. We observe, however, more studies are needed to have a whole understanding of eggs and larvae drifting in the Jirau reservoir.

Keywords

Fish eggs and larvae drift Jirau reservoir Madeira River 

List of symbols

H

Water depth

h

The bottom elevation from a reference level

C

Chézy coefficient

\(C_{\mathrm {D}}\)

Wind drag coefficient

\(u_{i}\)

Depth averaged velocity components

u

Velocity components in x direction

v

Velocity components in y directions

W

Wind speed 10 m above the free surface

\(E^{\mathrm{V}}_{ij}\)

Depth-averaged turbulent viscosity coefficient in the horizontal plane

\(E^{\mathrm{H}}_{ij}\)

Horizontal dispersion coefficient of momentum

\(a_{i}\)

Coriolis parameter

g

Gravitational acceleration

t

Time

Greek symbols

\(\varDelta t\)

Time step

\(\zeta\)

Free surface elevation

\(\varepsilon\)

Amplitude of the equivalence bottom roughness

\(\varGamma\)

Boundary of the spatial domain

\(\bar{\rho }\)

Average density in the water column

\(\rho _{\mathrm{air}}\)

Density of air

\(\rho _{\mathrm{r}}\)

Reference density

\(\varLambda _{k}\)

Widths of the spatial and temporal Gaussian filters

\(\kappa\)

von Karman’s constant

\(\tau _{ij}\)

Turbulent stress tensor

\(\tau ^{\mathrm{b}}\)

Bottom shear stress

\(\tau ^{\mathrm{s}}\)

Surface shear stress

Notes

Acknowledgements

The author MLCB grateful acknowledges the financial support provided by CNPq (Grant No. 160059/2012-7). This study is part of the project “Modelagem de hidrodinâmica e de deriva de ovos, larvas e juvenis no reservatório de aproveitamento hidrelétrico de Jirau - RO”, (Grant No. PENO11920). The authors would like to thanks Energia Sustentável do Brasil S.A., responsible for the Jirau HPP, in particular, the engineers J.A.G. Eraz and A.L.F.A. Jorge for providing field data and for their friendly cooperation.

References

  1. 1.
    Abbot MB, Basco R (1989) Computational fluid mechanics: an introduction for engineering. Longman Group, LondonGoogle Scholar
  2. 2.
    Agostinho AA, Pelicice FM, Gomes LC (2008) Dams and the fish fauna of the Neotropical: impacts and management related to diversity and fisheries. Braz J Biol 68(4 Suppl):1119–32CrossRefGoogle Scholar
  3. 3.
    Alam S, Jorge ALFA, Machado JLQ, Soares TF (2010) Hydraulic modelling of sediment and fish egg passage at Jirau, Brazil. Int J Hydropower Dams 17(6):106–111Google Scholar
  4. 4.
    Aldama AA (1985) Theory and applications of two- and three-scale filtering approaches for turbulent flow simulations. Thesis, Massachsetts Institute of Technology, Cambridge (MA)Google Scholar
  5. 5.
    Aldama AA (1990) Filtering techniques for turbulent flow simulation. In: Brebbia CA, Orzag SA (eds) Lecture notes in engineering, vol 56. Springer, BerlinGoogle Scholar
  6. 6.
    Aldama AA, Herleman DRF (1991) The approximation of nonlinearities in the filtered Navier–Stokes equations. Adv Water Resour 14(1):15–30CrossRefGoogle Scholar
  7. 7.
    Araujo-Lima CARM, Oliveira EC (1998) Transport of larval fish in the Amazon. J Fish Biol 53:297–306CrossRefGoogle Scholar
  8. 8.
    Araujo-Lima CARM, da Silva VV, Petry P, Oliveira EC, Moura SML (2001) Diel variation of larval fish abundance in the Amazon and Rio Negro. Braz J Biol 61(3):357–362CrossRefGoogle Scholar
  9. 9.
    Barros MLC, Rosman PCC, Telles JCF, Azevedo JPS (2011) A simple wetting and drying method for shallow water flow with application in the Vitoria Bay estuary, Brazil. In: Brebbia CA, Popov V (eds) Water resources management VI, WIT transactions on ecology and the environment, vol 145, 6th edn. Riverside, pp 215–225.  https://doi.org/10.2495/WRM110181
  10. 10.
    Barros MLC (2012) Modelagem hidrodinâmica e de qualidade de água em corpos de água com alagamento e secamento. [Tese]. Universidade Federal do Rio de Janeiro, Rio de Janeiro (RJ)Google Scholar
  11. 11.
    Barros MLC, Rosman PCC, Telles JCF (2014) An effective wetting and drying algorithm for numerical shallow water flow models. J Braz Soc Mech Sci Eng 37(3):1–17.  https://doi.org/10.1007/s40430-014-0211-6 Google Scholar
  12. 12.
    Barros MLC, Batista AG, Sena MJS, Amarante Mesquita AL, Blanco CJC (2015) Application of a shallow water model to analyze environmental effects in the Amazon Estuary Region: a case study of the Guajará Bay Pará Brazil. Water Pract Technol 10(4):846–859.  https://doi.org/10.2166/wpt.2015.104 CrossRefGoogle Scholar
  13. 13.
    Barthem R, da Costa MC, Cassemiro F, Leite RG, Silva Jr N (2014) Diversity and abundance of fish larvae drifting in the Madeira River, Amazon Basin: sampling methods comparison. In: Oscar G (ed) Biodiversity—the dynamic balance of the planet. InTech, pp 137–158.  https://doi.org/10.5772/57404. http://www.intechopen.com/books/biodiversity-the-dynamic-balance-of-the-planet/diversity-and-abundance-of-fish-larvae-drifting-in-the-madeira-river-amazon-basin-sampling-methods-c
  14. 14.
    Bastos WR, Gomes JPO, Oliveira RC, Almeida R, Nascimento EL, Bernardi JVE, Lacerda LD, Silveira EG, Pfeiffer WC (2006) Mercury in the environment and riverside population in the Madeira River Basin, Amazon. Brazil. Sci Total Environ 368(1):344–351CrossRefGoogle Scholar
  15. 15.
    Berselli LC, Iliescu T, Layton WJ (2010) Mathematics of large eddy simulation of turbulent flows. Scientific computation. Springer, BerlinMATHGoogle Scholar
  16. 16.
    Blanton J, Werner F, Kapolnai A, Blanton B, Knott D, Wenner E (1999) Wind-generated transport of fictitious passive larvae into shallow tidal estuaries. Fish Oceanogr 8:210–223.  https://doi.org/10.1046/j.1365-2419.1999.00024.x CrossRefGoogle Scholar
  17. 17.
    Boubée J, Haro A (2003) Downstream migration and passage technologies for diadromous fishes in the United States and New Zealand: tales from two hemispheres. Downstream movement of fish in the Murray–Darling basin. In: Canberra workshop, pp 24–32Google Scholar
  18. 18.
    Bührnheim CM, Fernande CC (2003) Structure of fish assemblages in Amazonian rain-forest streams: effects of habitats and locality. Copeia 2:255–262CrossRefGoogle Scholar
  19. 19.
    Bujold V, Cunjak RA, Dietrich JP, Courtemanche DA (2004) Drifters versus residents: assessing size and age differences in Atlantic salmon (Salmo solar) fry. Can J Fish Aquat Sci 61(2):273–282.  https://doi.org/10.1139/f03-162 CrossRefGoogle Scholar
  20. 20.
    Cada GF (2008) Effects of hydroelectric turbine passage on fish early life stages. Environmental Sciences Division, Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  21. 21.
    Cunha CLN, Rosman PCC, Ferreira AP, Monteiro TCN (2006) Hydrodynamics and water quality models applied to Sepetiba Bay. Cont Shelf Res 26(16):1940–1953CrossRefGoogle Scholar
  22. 22.
    Daly JW, Harleman DRF (1966) Fluid dynamics. Addison-Wesley, ReadingMATHGoogle Scholar
  23. 23.
    De Lima AC, Araujo-Lima CARM (2004) The distributions of larval and juvenile fishes in Amazonian rivers of different nutrient status. Freshw Biol 49(6):787–800.  https://doi.org/10.1111/j.1365-2427.2004.01228.x CrossRefGoogle Scholar
  24. 24.
    Doria CRC, Ruffino ML, Rijazi NC, Cruz RL (2012) A pesca comercial na bacia do rio Madeira no estado de Rondônia, Amazônia brasileira. Acta Amazonica 42(1):29–40.  https://doi.org/10.1590/S0044-59672012000100004 CrossRefGoogle Scholar
  25. 25.
    Dronkers JJ (1969) Tidal computation in rivers and costal waters. J Hydraul Div ASCE 95(HY1):44–77Google Scholar
  26. 26.
    Egré D, Milewski JC (2002) The diversity of hydropower projects. Energy Policy 30(14):1225–1230CrossRefGoogle Scholar
  27. 27.
    Feitosa RC, Rosman PCC, Carvalho JLB, Côrtes MBV, Wasserman JC (2013) Comparative study of fecal bacterial decay models for the simulation of plumes of submarine sewage outfalls. Water Sci Technol 68(3):622–631CrossRefGoogle Scholar
  28. 28.
    Filizolla NP (1999) O fluxo de sedimentos em suspensao nos rios da bacia Amazônica Brasileira. ANEEL, Brasilia, p 63Google Scholar
  29. 29.
    Galperim B, Orszaq SA (2010) Large eddy simulation of complex engineering and geophysical flows. Cambridge University Press, CambridgeGoogle Scholar
  30. 30.
    Garcia T, Jackson PR, Murphy EA, Valocchi AJ, Garcia MH (2013) Development of a fluvial egg drift simulator to evaluate the transport and dispersion of Asian carp eggs in rivers. Ecol Model 263:211–222CrossRefGoogle Scholar
  31. 31.
    George G, Vethamony P, Sudheesh K, Babu MT (2011) Fish larval transport in a macro-tidal regime: gulf of Kachchh, west coast of India. Fish Res 110(1):160–169CrossRefGoogle Scholar
  32. 32.
    Guyot JL, Jouanneau JM, Wasson JG (1999) Characterisation of river bed and suspended sediments in the Rio Madeira drainage basin (Bolivia Amazonia). J S Am Earth Sci 12:401–410CrossRefGoogle Scholar
  33. 33.
    Heniche M, Secretan Y, Boudreau P, Michel L (2000) A two-dimensional finite element drying-wetting shallow water model for rivers and estuaries. Adv Water Resour 23(4):359–372CrossRefGoogle Scholar
  34. 34.
    Hervouet J-M (2007) Hydrodynamics of free surface flows: modelling with the Finite Element Method. Wiley, New YorkCrossRefMATHGoogle Scholar
  35. 35.
    Horita CO, Rosman PCC (2004) A Lagrangian model for shallow water bodies contaminant transport. In: Proceedings of the 8th international coastal symposium, 14–19 March, Itajaí, BrazilGoogle Scholar
  36. 36.
    Humphries P, Lake PS (2000) Fish larvae and the management of regulated rivers. Regul Rivers Res Manag 16(5):421–4322CrossRefGoogle Scholar
  37. 37.
    Humphries P (2005) Spawning time and early life history of Murray cod, Maccullochella peelii (Mitchell) in an Australian rive. Environ Biol Fishes 72(4):393–407CrossRefGoogle Scholar
  38. 38.
    Jiang YW, Wai OWH (2005) Drying wetting approach for 3D finite element sigma coordinate model for estuaries with large tidal flats. Adv Water Resour 28:779–792CrossRefGoogle Scholar
  39. 39.
    Jiang W, Liu H-Z, Duan Z-H, Cao W-X (2010) Seasonal variation in drifting eggs and larvae in the Upper Yangtze, China. Zool Sci 27(5):402–409CrossRefGoogle Scholar
  40. 40.
    Junk WJ, Soares GM, Carvalho FM (1983) Distribution of fish species in a lake of the Amazon River floodplain near Manaus (Lago Camaleão), with species reference to extreme oxygen conditions. Amazoniana 7(4):397–431Google Scholar
  41. 41.
    Löhner R (2008) Applied computational fluid dynamics techniques: an introduction based on finite element methods. Wiley, ChichesterCrossRefMATHGoogle Scholar
  42. 42.
    Latrubesse EM, Stevaux JC, Sinha R (2005) Tropical rivers. Geomorphology 70(3–4):187–206CrossRefGoogle Scholar
  43. 43.
    Leis JM, Hay AC, Trnski T (2006) In situ ontogeny of behaviour in pelagic larvae of three temperate, marine, demersal fishes. Mar Biol 148(3):655–669CrossRefGoogle Scholar
  44. 44.
    Lechner A, Keckeis H, Schludermann E, Humphries P, McCasker N, Tritthart M (2014) Hydraulic forces impact larval fish drift in the free flowing section of large European river. Ecohydrology 7:648–658.  https://doi.org/10.1002/eco.1386 CrossRefGoogle Scholar
  45. 45.
    Lechner A, Keckeis H, Schludermann E, Loisl F, Humphries P, Glas M, Tritthat M, Habersack H (2014) Shoreline configurations affect dispersal patterns of fish larvae in a large river. ICES J Mar Sci 71(4):930–942.  https://doi.org/10.1093/icesjms/fst139 CrossRefGoogle Scholar
  46. 46.
    Lechner A, Keckeis H, Humphries P (2016) Patterns and processes in the drift of early developmental stages of fish in rivers: a review. Rev Fish Biol Fish 26(3):471–489.  https://doi.org/10.1007/s11160-016-9437-y CrossRefGoogle Scholar
  47. 47.
    Lima PA (2015) Influência da construção da usina hidreltrica de Santo Antônio sobre a passagem de larvas e juvenis de Pimelodidae, de montante a jusante da barragem no rio Madeira, Porto Velho-RO, Brasil. Dissertation, Funada̧ão Universidade Federal de RoraimaGoogle Scholar
  48. 48.
    Mariani P, MacKenzie BR, Iudicone D, Bozec A (2010) Modelling retention and dispersion mechanisms of bluefin tuna eggs and larvae in the northwest Mediterranean Sea. Prog Oceanogr 86(1–2):45–58CrossRefGoogle Scholar
  49. 49.
    Martins IM, Dias JM, Fernandes EH, Muelbert JH (2007) Numerical modelling of fish eggs dispersion at the Patos Lagoon estuary—Brazil. J Mar Syst 68(3–4):537–555CrossRefGoogle Scholar
  50. 50.
    Muth RT, Schulbach JC (1984) Downstream transport of fish larvae in a shallow Prairie. Trans Am Fish Soc 113:224–230.  https://doi.org/10.1577/1548-8659(1984)113%3c224:Dtofli%3e2.0.Co;2 CrossRefGoogle Scholar
  51. 51.
    Neto RA (2006) Simulação hidrológica na Amazônia: Rio Madeira. [Tese de Doutorado]. Universidade Federal do Rio de Janeiro, Rio de Janeiro (RJ)Google Scholar
  52. 52.
    Pavlov DS (1994) The downstream migration of juvenile fishes in the rivers-mechanisms and distribution. Folia Zool 43:193–208MathSciNetGoogle Scholar
  53. 53.
    Pavlov DS, Nezdoliy VK, Urteaga AK, Sanches OR (1995) Downstream migration of juvenile fishes in the rivers of Amazonian Peru. J Ichthyol 35(9):753–767Google Scholar
  54. 54.
    Pavlov DS, Mikheev VN (2017) Downstream migration and mechanisms of dispersal of young fish in rivers. Can J Fish Aquat Sci 74(8):1312–1323.  https://doi.org/10.1139/cjfas-2016-0298 CrossRefGoogle Scholar
  55. 55.
    Pompeu PS, Nogueira LB, Godinho HP, Martinez CB (1987) Downstream passage of fish larvae and eggs through a small-sized reservoir, Mucuri river, Brazil. Zoologia (Curitiba) 28(6):739–746.  https://doi.org/10.1590/S1984-46702011000600006 CrossRefGoogle Scholar
  56. 56.
    Queiroz LJ, Vilara-Torrente G, Ohara WM, Pires THS, Zuanon J, Doria CRC (2013) Peixes do Rio Madeira, vol I. Santo Antônio Energia, São PauloGoogle Scholar
  57. 57.
    Boletim Climatológico de Rondônia (2010) In: Secretaria de Estado do Desenvolvimento Ambiental (SEDAM). Porto Velho, p 28Google Scholar
  58. 58.
    Rosman PCC (1987) Modeling shallow water bodies via filtering techniques. Thesis, Massachusetts Institute of Technology, Cambridge (MA)Google Scholar
  59. 59.
    Rosman PCC (1997) Subsídios para Modelagem de Sistemas Estuarinos. In: Silva RCV (ed) Métodos Numéricos em Recursos Hídricos, vol 2. Associação Brasileira de Recursos Hídricos-ABRH, Rio de Janeiro, pp 229–343Google Scholar
  60. 60.
    Rosman PCC (2016) Referência Técnica do SisBaHiA-Sistema Base de Hidrodinâmica Ambiental, Programa COPPE, Engenharia Oceânica, Área de Engenharia Costeira e Oceanográfica, Rio de Janeiro, Brazil (in Portuguese). http://www.sisbahia.coppe.ufrj.br/SisBAHIARefTec_V90.pdf. Accessed 03 October 2016
  61. 61.
    Saad Y (1995) Iterative methods for sparse linear systems. PWS Publishing Company, BostonGoogle Scholar
  62. 62.
    Santos GM (1987) Composição do pescado e situaçãda pesca no Estado de Rondônia. Acta Amazon 17:43–84.  https://doi.org/10.1590/1809-43921987175084 CrossRefGoogle Scholar
  63. 63.
    Sabino J, Fzuanon JAS (1998) A stream fish assemblage in Central Amazonia: distribution, activity patterns and feeding behavior. Ichthyol Explor Freshw 8(3):201–210Google Scholar
  64. 64.
    Simons RD, Siegel DA, Brown KS (2013) Model sensitivity and robustness in the estimation of larval transport: a study of particle tracking parameters. J Mar Syst 0(119–120):19–29Google Scholar
  65. 65.
    Schludermann E, Tritthart M, Humphries P, Keckeis H (2012) Orientation behavior in fish larvae: a missing piece to Hjort’s critical period hypothesis. J Theor Biol 5304:188–196.  https://doi.org/10.4319/lo.2010.55.2.0628 Google Scholar
  66. 66.
    Schwalb AN, Garvie M, Ackerman JD (2010) Dispersion of freshwater mussel larvae in a lowland river. Limnol Oceanogr 55(2):7628–638.  https://doi.org/10.4319/lo.2010.55.2.0628 CrossRefGoogle Scholar
  67. 67.
    Soito JLS, Freitas MAV (2011) Amazon and the expansion of hydropower in Brazil: vulnerability, impacts and possibilities for adaptation to global climate change. Renew Sustain Energy Rev 15(6):3165–3177CrossRefGoogle Scholar
  68. 68.
    Souza RS, Araújo LMN (2001) Análise geoambiental preliminar da hidrovia do Rio Madeira, Amazônia, Brasil, Serviço Geológico do Brasil, CPRMGoogle Scholar
  69. 69.
    Stevens M, Trochet A, Van Dyck H, Clobert J, Baguette M (2012) How is dispersal integrated in life histories: a quantitative analysis using butterflies. Ecol Lett 15:74–86CrossRefGoogle Scholar
  70. 70.
    Tsanis I, Wu J, Shen H, Va C (2007) Environmental hydraulics hydrodynamic and pollutant transport modelling of lakes and coastal waters. In: Developments in water science, vol 56, 1st edn. Elsevier, AmsterdamGoogle Scholar
  71. 71.
    Villar ER, Martinez JM, Le Texier M, Guyot J-L, Fraizy P, Meneses PR, Oliveira ED (2012) A study of sediment transport in the Madeira River, Brazil, using MODIS remote-sensing images. J S Am Earth Sci 44:45–54.  https://doi.org/10.1016/j.jsames.2012.11.006 CrossRefGoogle Scholar
  72. 72.
    Von Sperling E (2012) Hydropower in Brazil: overview of positive and negative environmental aspects. Energy Procedia 18:110–118CrossRefGoogle Scholar
  73. 73.
    Wu J (1982) Windstress coefficients over sea surface from breeze to hurricane. J Geophys Res 87(12):9704–9706MathSciNetCrossRefGoogle Scholar
  74. 74.
    Winnellu MH, Jude DJ (1991) Northern large-river benthic and larval fish drift: St. Marys River, USA/Canada. J Gt Lakes Res 17(2):168–182CrossRefGoogle Scholar
  75. 75.
    Zimmer RK, Fingerut JT, Zimmer CA (2009) Dispersal pathways, seed rains, and the dynamics of larval behavior. Ecology 90(7):1933–1947.  https://doi.org/10.1890/08-0786.1 CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  • Maria de Lourdes Cavalcanti Barros
    • 1
    • 2
  • Paulo Cesar Colonna Rosman
    • 1
  1. 1.Ocean Engineering Program, COPPEUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Centro de Energia Nuclear na AgriculturaUniversidade de São PauloPiracicabaBrazil

Personalised recommendations