An iterative modified multiscale control volume method for the simulation of highly heterogeneous porous media flow

  • L. M. C. Barbosa
  • A. R. E. Antunes
  • P. R. M. Lyra
  • D. K. E. Carvalho
Technical Paper
  • 29 Downloads

Abstract

In this paper, a modification of the multiscale finite-volume method (MsFVM) in its OBMM version (operator-based multiscale method) is introduced. The iterative modified multiscale control volume method (I-MMCVM) is applied to solve the elliptical problem that describes the single-phase fluid flow through heterogeneous porous media. The modifications proposed are accomplished by: (1) resettling the vertices, centroid of the primal coarse volume, of each primal coarse volume laying on the boundary of the computational domain, and by this, avoiding the use of ghost elements; (2) Recalculating the pressure iteratively in each primal coarse volume to improve the accuracy of the solution lost during the process of decoupling the problem in sub-problems. The I-MMCVM achieves efficiently accurate results for flow equations in highly heterogeneous reservoirs, at very low computational cost whilst it recovers physical consistency whenever the multiscale solution fails and produces nonphysical results. The I-MMCVM solution is compared with the fine mesh solution for some highly heterogeneous media. In terms of efficiency, the novel method showed great potential of the multiscale formulations, i.e., computational cost reduction without significant loss of accuracy.

Keywords

Iterative multiscale finite volume method Single-phase flow Highly heterogeneous porous media Reservoir simulation 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support provide by the Brazilian Research Councils CNPq, FINEP, The Pernambuco Research Agency FACEPE, PRH26-ANP, and CENPESPETROBRAS.

References

  1. 1.
    Zhou H, Tchelepi HA (2008) Operator-based multi-scale method for compressible flow. Soc Petroleum Eng 13:267–273Google Scholar
  2. 2.
    Zhou H (2010) Algebraic multiscale finite-volume for reservoir simulation. Ph.D. Thesis, Stanford UniversityGoogle Scholar
  3. 3.
    Chen Z, Huan G, Li B (2004) An improved IMPES method for two-phase flow in porous media. Transp Porous Media 54:361–376MathSciNetCrossRefGoogle Scholar
  4. 4.
    Christie MA, Blunt MJ (2001) Tenth SPE comparative solution project: a comparison of upscaling techniques. Soc Petroleum Eng 4:308–317Google Scholar
  5. 5.
    Efendiev Y, Durlofsky LJ (2002) Numerical modeling of subgrid heterogeneity in two phase flow simulations. Water Resour Res 38(8):1128–1138CrossRefGoogle Scholar
  6. 6.
    Cortis A, Gallo C, Scher H, Berkowitz B (2004) Numerical simulation of non-Fickian transport in geological formations with multiple-scale heterogeneities. Water Resour Res 40(4):1–16CrossRefGoogle Scholar
  7. 7.
    Cushman JH, Hu BX, Deng FW (1995) Nonlocal reactive transport with physical and chemical heterogeneity: localization errors. Water Resour Res 31(9):2219–2237CrossRefGoogle Scholar
  8. 8.
    Hou T, Wu XH (1997) A multiscale finite element method for elliptic problems in composite materials and porous media. J Comput Phys 134:169–189MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chen ZM, Hou TY (2003) A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math Comput 72(242):541–576MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Jenny P, Lee SH, Tchelepi HA (2003) Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J Comput Phys 187:47–67CrossRefMATHGoogle Scholar
  11. 11.
    Jenny P, Lee SH, Tchelepi HA (2004) Adaptive multiscale finite volume method for multi-phase flow and transport. Multiscale Model Simul 3(1):50–64MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Jenny P, Lee SH, Tchelepi HA (2006) An adaptive fully implicit multi-scale finite-volume algorithm for multi-phase flow in porous media. J Comput Phys 217(2):627–641MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hajibeygi H, Bonfigli G, Hesse MA, Jenny P (2008) Iterative multiscale finite-volume method. J Comput Phys 227:8604–8621MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Møyner O (2012) Multiscale finite volume methods: extension to unstructured grids with applications in reservoir simulation. MSc dissertation, University of Science and TechnologyGoogle Scholar
  15. 15.
    Møyner O, Lie KA (2014) A multiscale two-point flux-approximation method. J Comput Phys 275:273–293MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hajibeygi H, Jenny P (2009) Multiscale Finite-Volume Method for parabolic problems arising from compressible multiphase flow in porous media. J Comput Phys 228:5129–5147MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Wang Y, Hajibeygi H, Tchelepi HA (2014) Algebraic multiscale for flow in heterogeneous porous media. J Comput Phys 259:284–303MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Tene M, Al Kobaisi MS, Hajibeygi H (2016) Algebraic multiscale method for flow in heterogeneous porous media with embedded discrete fractures (F-AMS). J Comput Phys 321:819–845MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Tene M, Wang Y, Hajibeygi H (2015) Adaptive algebraic multiscale solver for compressible flow in heterogeneous porous media. J Comput Phys 300:679–694MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Efendiev Y, Galvis J, Hou T (2013) Generalized multiscale finite element methods. J Comput Phys 251:215–235MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Cortinovis D, Jenny P (2014) Iterative Galerkin-enriched multiscale finite-volume method. J Comput Phys 277:248–267MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Hajibeygi H, Tchelepi HA (2013) Compositional multiscale finite-volume formulation. In: SPE reservoir simulation symposium, Texas, USA (SPE163664)Google Scholar
  23. 23.
    Lunati I, Lee SH (2009) An operator formulation of the multiscale finite-volume method with correction function. Multiscale Model Simul 8(1):96–109MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Aavatsmark I (2002) An introduction to multipoint flux approximations for quadrilateral grids. Comput Geosci 6:405–432MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Peaceman DW (1977) Fundamentals of numerical reservoir simulation. Elsevier, AmsterdamGoogle Scholar
  26. 26.
    Kippe V, Aarnes JE, Lie KA (2008) A comparison of multiscale methods for elliptic problems in porous media flow. Comput Geosci 12:377–398MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Lunati I, Tyagi M, Lee SH (2011) An iterative multiscale finite volume algorithm converging to the exact solution. J Comput Phys 230:1849–1864CrossRefMATHGoogle Scholar
  28. 28.
    Hajibeygi H, Jenny P (2011) Adaptive iterative multiscale finite volume method. J Comput Phys 230:628–643MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Dehkordi MM, Manzari MT (2013) Effects of using altered coarse grids on the implementation and computational cost of the multiscale finite volume method. Adv Water Resour 59:221–237CrossRefGoogle Scholar
  30. 30.
    Carvalho DKE, Willmersdorf RB, Lyra PRM (2007) A node-centered finite volume formulation for the solution of two-phase flows in non-homogeneous porous media. Int J Numer Methods Fluids (Print) 53:1197–1219CrossRefMATHGoogle Scholar
  31. 31.
    Edwards MG, Rogers CF (1998) Finite volume discretization with imposed flux continuity for the general tensor pressure equation. Comput Geosci 2:259–290MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  • L. M. C. Barbosa
    • 1
  • A. R. E. Antunes
    • 2
  • P. R. M. Lyra
    • 1
  • D. K. E. Carvalho
    • 1
  1. 1.Mechanical Engineering DepartmentFederal University of PernambucoRecifeBrazil
  2. 2.Technology CenterFederal University of PernambucoCaruaruBrazil

Personalised recommendations