Skip to main content
Log in

Permeability conditions for the physiological viscous nanofluid: endoscopic analysis for uniform and non-uniform tubes

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The analysis of endoscopic effect in uniform and non-uniform tubes for the peristaltic flow of a viscous nanofluid with permeable condition is discussed. We have used copper as a nanoparticle and blood as its base fluid. The present problem is modeled and exact solutions for non-dimensional differential equations are found under low Reynolds number and long wavelength approximation. The possessions of all physical parameters on peristaltic flow and heat transfer characteristics are witnessed from graphical depictions. It is found that temperature profile decreases when we increase nanoparticle concentration into our base fluid for both uniform and non-uniform tubes. It is also found that velocity profile increases near the endoscopic tube for increasing values of Darcy number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP (eds) Developments and applications of non-newtonian flows. ASME, New York, pp 66–99

    Google Scholar 

  2. Ellahi R, Hassan M, Zeeshan A, Khan AA (2016) The shape effects of nanoparticles suspended in HFE-7100 over wedge with entropy generation and mixed convection. Appl Nanosci. doi:10.1007/s13204-015-0481-z

    Google Scholar 

  3. Youchun J, Corey R, Chang X, Wenke F, Zhanxiang Z, Walter R, Suresh CT, John WE, Jack TS, James KY (2007) Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice. J Exp Med 204(3):657–666

    Article  Google Scholar 

  4. Nadeem S, Sadaf H (2015) Theoretical analysis of Cu-blood nanofluid for metachronal wave of cilia motion in a curved channel. Trans Nanobiosci. doi:10.1109/TNB.2015.2401972

    Google Scholar 

  5. Akbar NS, Nadeem S (2011) Endoscopic effects on the peristaltic flow of nanofluid. Commun Theor Phys 56:761

    Article  MATH  Google Scholar 

  6. Ellahi R, Razab M, Vafaia K (2012) Series solutions of non-Newtonian nanofluids with Reynold’s model and Vogel’s model by means of the homotopy analysis method. Math Comput Model 55:1876

    Article  MathSciNet  Google Scholar 

  7. Sadik K, Pramuanjaroenkij A (2009) Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf 52:3187

    Article  MATH  Google Scholar 

  8. Akram S, Nadeem S (2014) Signifcance of nanofluid and partial slip on the peristaltic transport of a non-Newtonian fluid with different wave forms. IEEE Trans Nanotechnol 13:375

    Article  Google Scholar 

  9. Yasin MHM, Norihan MA, Roslinda N, Fudziah I, Ioan P (2013) Mixed convection boundary layer flow embedded in a thermally stratified porous medium saturated by a nanofluid. Adv Mech Eng 2013:121943

    Article  Google Scholar 

  10. Ellahi R, Aziz S, Zeeshan A (2013) Non-Newtonian nanofluid flow through a porous medium between two coaxial cylinders with heat transfer and variable viscosity. J Por Med. doi:10.1615/JPorMedia.v16.i3.30

    Google Scholar 

  11. Ellahi R (2013) The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe. Analytical solutions. Appl Math Model 37:1451

    Article  MathSciNet  MATH  Google Scholar 

  12. Latham TW (1966) Fluid motion in a peristaltic pump, MS. Thesis, Massachusetts Institute of Technology, Cambridge

  13. Kothandapani M, Srinivas S (2008) Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel. Int J Nonlinear Mech 43:915

    Article  Google Scholar 

  14. Tripathi D (2011) Peristaltic transport of fractional Maxwell fluids in uniform tubes: applications in endoscopy. Comput Math Appl 62:1116

    Article  MathSciNet  MATH  Google Scholar 

  15. Mekheimer KS, Elmaboud YA (2008) Peristaltic flow of a couple stress fluid in an annulus: application of an endoscope. Phys A 387:2403

    Article  MATH  Google Scholar 

  16. Nadeem S, Akbar NS, Vajravelue K (2011) Peristaltic flow of a Sisko fluid in an endoscope analytical and numerical solutions. Int J Comput Math 88:1013

    Article  MathSciNet  MATH  Google Scholar 

  17. Nadeem S, Sadaf H, Akbar NS (2014) Analysis of peristaltic flow for a Prandtl fluid model in an endoscope. J Power Technol 94:1

    Google Scholar 

  18. El Naby AEHA, El Misery AEM, El Shamy II (2004) Effects of an endoscope and fluid with variable viscosity on peristaltic motion. Appl Math Comput 158:497

    MathSciNet  MATH  Google Scholar 

  19. Mekheimer KS, Elmaboud YA (2008) The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: application of an endoscope. Phys Lett A 372:1657

    Article  MATH  Google Scholar 

  20. Safia A, Ghafoor A, Nadeem S (2012) Mixed convective heat and mass transfer on a peristaltic flow of a non-Newtonian fluid in a vertical asymmetric channel. Heat Transf A Res 41:613

    Article  Google Scholar 

  21. Goodarzi M, Safaei MR, Vafai K, Ahmadi G, Dahari M, Kazi SN, Jomhari N (2014) Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model. Int J Therm Sci 75:204

    Article  Google Scholar 

  22. Khorasanizadeh H, Nikfar M, Amani J (2013) Entropy generation of Cu–water nanofluid mixed convection in a cavity. Eur J Mech B Fluids 37:143

    Article  MathSciNet  MATH  Google Scholar 

  23. Vajravelu K, Sreenadh S, Arunachalam PV (1992) Combined free and forced convection in an inclined channel with permeable boundaries. J Math Anal Appl 166:393–403

    Article  MathSciNet  MATH  Google Scholar 

  24. Ravi Kumar YV, Rajender S, Krishn Kumari SVHN, Sreenadh S (2014) Peristaltic pumping of a Jeffrey fluid in an asymmetric channel with permeable walls. Malaya J Mat 2:141

    Google Scholar 

  25. Ravi Kumar YV, Krishna Kumari SVHN, Ramana MMV, Sreenadh S (2010) Unsteady peristaltic pumping in a finite length tube with permeable wall. Trans ASME J Fluids Eng 132:101

    Article  Google Scholar 

  26. Avinash K, Ananda RJ, Ravi Kumar YV, Sreenadh S (2013) Bingham fluid flow through a tapered tube with permeable wall. J Appl Fluid Mech 6:143

    Google Scholar 

  27. Misra JC, Ghosh SK (1997) A mathematical model for the study of blood flow through a channel with permeable walls. Acta Mech 122:137

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hina Sadaf.

Additional information

Technical Editor: Jader Barbosa Jr.

Appendix

Appendix

$$\begin{aligned} a_{1} &= \frac{{k_{f} }}{{k_{\text{nf}} }},\, \, a_{2} = \frac{{\mu_{f} }}{{\mu_{\text{nf}} }},\, a_{3} = \frac{{(\rho \beta )_{\text{nf}} }}{{(\rho \beta )_{f} }},\, a_{4} = Ba_{1} a_{2} a_{3} Gr ,\, a_{5} = - a_{2} a_{3} C_{1} Gr,\\ a_{6} &= - C_{2} a_{2} a_{3} Gr ,\,a_{7} = \frac{{a_{6} }}{4} - 2\frac{{a_{5} }}{8},\, a_{8} = \frac{{a_{4} }}{64},\, a_{9} = \frac{{a_{5} }}{4} \\ C_{1} & = - \frac{{ - 4 - a_{1} Br_{1}^{2} + a_{1} Br_{2}^{2} }}{{4({\text{Log}}[r_{1} ] - {\text{Log}}[r_{2} ])}},\quad C_{2} = \frac{{ - a_{1} Br_{2}^{2} {\text{Log}}[r_{1} ] + 4{\text{Log}}[r_{2} ] + a_{1} Br_{1}^{2} {\text{Log}}[r_{2} ]}}{{4({\text{Log}}[r_{1} ] - {\text{Log}}[r_{2} ])}} \\ A_{1} &= ((r_{1} - r_{2} )(4\sqrt {Da} (45 + 5(6a_{7} + a_{9} )r_{1}^{2} + 36a_{8} r_{1}^{4} + r_{1} ( - 15a_{7} + 5a_{9} - 9a_{8} r_{1}^{2} )r_{2} \\ &\quad -\, (105a_{7} + 40a_{9} + 9a_{8} r_{1}^{2} )r_{2}^{2} - 9a_{8} r_{1} r_{2}^{3} - 189a_{8} r_{2}^{4} ) + 45r_{2} (a_{2} a_{3} DaGr ( - 4C_{2} \\ &\quad +\, a_{1} Br_{2}^{2} ) - 4(r_{1}^{2} - r_{2}^{2} )(a_{7} + a_{8} (r_{1}^{2} + r_{2}^{2} )))\xi ) + 120a_{9} r_{1}^{3} r_{2} \xi {\text{Log}}[r_{1} ]^{2} \\ & \quad + \,{\text{Log}}[r_{1} ](60\sqrt {Da} (2a_{9} r_{1}^{3} - 3a_{9} r_{1}^{2} r_{2} + 3(2a_{7} + a_{9} )r_{2}^{3} + 12a_{8} r_{2}^{5} ) + r_{2} (4r_{1} (45 + 10(3a_{7} \\ & \quad -\, 4a_{9} )r_{1}^{2} + 36a_{8} r_{1}^{4} ) + 180( - 1 + a_{2} a_{3} C_{2} DaGr + a_{9} r_{1}^{2} )r_{2} - 5(24a_{7} + 4a_{9} \\ & \quad +\, 9a_{1} a_{2} a_{3} BDaGr )r_{2}^{3} - 144a_{8} r_{2}^{5} )\xi + 60r_{2} (6a_{9} \sqrt {Da} r_{2}^{2} + 3a_{2} a_{3} C_{1} DaGr r_{2} \xi \\ & \quad -\, 2a_{9} (r_{1}^{3} + r_{2}^{3} )\xi ){\text{Log}}[r_{2} ]) + r_{2} {\text{Log}}[r_{2} ]( - 120\sqrt {Da} r_{2} (3a_{9} r_{1} + 3a_{7} r_{2} \\ & \quad -\, 2a_{9} r_{2} + 6a_{8} r_{2}^{3} ) + ( - 4r_{1} (45 + 45a_{2} a_{3} C_{1} DaGr + 5(6a_{7} + a_{9} )r_{1}^{2} + 36a_{8} r_{1}^{4} ) \\ & \quad +\, 180(1 + a_{2} a_{3} (C_{1} - C_{2} )DaGr )r_{2} + 180a_{9} r_{1} r_{2}^{2} + 5(24a_{7} - 32a_{9} + 9a_{1} a_{2} a_{3} BDaGr ) \\ &\quad r_{2}^{3} + 144a_{8} r_{2}^{5} )\xi + 60r_{2} ( - 3a_{2} a_{3} C_{1} DaGr \xi + 2a_{9} r_{2} ( - 3\sqrt {Da} + r_{2} \xi )){\text{Log}}[r2]))/ \\ & \quad (180(\sqrt {Da} + r_{2} \xi ({\text{Log}}[r_{1} ] - {\text{Log}}[r_{2} ]))), \\ A_{2} &= - \frac{1}{{(12(\sqrt {Da} + r_{2} \xi ({\text{Log}}[r_{1} ] - {\text{Log}}[r_{2} ])))}}(a_{2} ((r_{1} - r_{2} )(\sqrt {Da} (2r_{1}^{2} - r_{1} r_{2} \\ &\quad -\, 7r_{2}^{2} ) + 3r_{2} (4Da - r_{1}^{2} + r_{2}^{2} )\xi ) + 2r_{2} ( - 3\sqrt {Da} r_{2}^{2} + ( - r_{1}^{3} + 6Dar_{2} + r_{2}^{3} )\xi )( - {\text{Log}}[r_{1} ] + {\text{Log}}[r_{2} ])). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadaf, H., Akbar, M.U. & Nadeem, S. Permeability conditions for the physiological viscous nanofluid: endoscopic analysis for uniform and non-uniform tubes. J Braz. Soc. Mech. Sci. Eng. 39, 3413–3423 (2017). https://doi.org/10.1007/s40430-017-0829-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0829-2

Keywords

Navigation