Skip to main content
Log in

The impact of C/H on the radiative and thermal behavior of liquid fuel flames and pollutant emissions

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The present experimental study is performed to document the effects of carbon-to-hydrogen mass ratio (C/H) in liquid hydrocarbon fuels, on the luminosity, thermal radiation rate, and temperature of flame. Furthermore, extraction of the thermal and radiative characteristics of flame, and measurement of exhaust gases including CO, CO2, and NO x have been carried out. The CHNS elemental analyzer system was employed to ascertain fuel composition. The thermopile sensor and the lux meter were utilized to measure the flame thermal radiation and luminosity. The measured flame radiation spectrum included all possible wavelengths (i.e., flame thermal radiation) and visible wavelengths (i.e., luminosity). The flame photography technique, as a non-intrusive method, depicted the flame visible radiation, IR spectral emittance, and high temperature zone. The results revealed that the luminosity and thermal radiation of the flame increased as we increase C/H. A rise in C/H made the temperature along the flame axis more uniform. The NO x emissions were within standard levels (i.e., under 200 ppm). It was also shown that the C/H variation has a greater effect on luminosity than thermal radiation of the flame. The flame luminosity was increased by 66% when the C/H was increased from 5.47 to 5.68, whereas the flame thermal radiation increased by 26%. In addition, a new correlation is proposed to predict the linear relation of the increase in the thermal radiation and the increase in the luminosity of the flame as a function of C/H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mensch A, Santoro RJ, Litzinger TA, Lee SY (2010) Sooting characteristics of surrogates for jet fuels. Combust Flame 157(6):1097–1105. doi:10.1016/j.combustflame.2010.02.008

    Article  Google Scholar 

  2. Meng X, Xu C, Li L, Gao J (2011) Cracking performance and feed characterization study of catalytic pyrolysis for light olefin production. Energy Fuels 25(4):1357–1363. doi:10.1021/ef101775x

    Article  Google Scholar 

  3. Yue L, Li G, He G, Guo Y, Xu L, Fang W (2016) Impacts of hydrogen to carbon ratio (H/C) on fundamental properties and supercritical cracking performance of hydrocarbon fuels. Chem Eng J 283:1216–1223. doi:10.1016/j.cej.2015.08.081

    Article  Google Scholar 

  4. Zhang L, Li S, Han L, Sun X, Xu Z, Shi Q, Xu C, Zhao S (2013) Coking reactivity of laboratory-scale unit for two heavy petroleum and their supercritical fluid extraction subfractions. Ind Eng Chem Res 52(16):5593–5600. doi:10.1021/ie302891b

    Article  Google Scholar 

  5. Sforzo B, Dao H, Wei S, Seitzman J (2016) Liquid fuel composition effects on forced, nonpremixed ignition. J Eng Gas Turbines Power 139(3):031509-031509-031508. doi:10.1115/1.4034502

    Article  Google Scholar 

  6. Attaphong C, Singh V, Balakrishnan A, Do LD, Arpornpong N, Parthasarathy RN, Gollahalli SR, Khaodhiar S, Sabatini DA (2016) Phase behaviors, fuel properties, and combustion characteristics of alcohol-vegetable oil-diesel microemulsion fuels. Int J Green Energy 13(9):930–943. doi:10.1080/15435075.2015.1088854

    Article  Google Scholar 

  7. Köylü UO, Faeth GM (1993) Radiative properties of flame-generated soot. J Heat Transf 115(2):409–417. doi:10.1115/1.2910693

    Article  Google Scholar 

  8. Javadi SM, Moghiman M (2012) Experimental study of natural gas temperature effects on the flame luminosity and no emission. Int J Spray Combust Dyn 4(2):175–184. doi:10.1260/1756-8277.4.2.175

    Article  Google Scholar 

  9. Pourhoseini SH, Moghiman M (2015) Effect of pulverized anthracite coal particles injection on thermal and radiative characteristics of natural gas flame: an experimental study. Fuel 140:44–49. doi:10.1016/j.fuel.2014.09.056

    Article  Google Scholar 

  10. Balakrishnan A, Parthasarathy RN, Gollahalli SR (2015) Combustion characteristics of partially premixed prevaporized palm methyl ester and jet a fuel blends. J Energy Res Technol 138(1):012202. doi:10.1115/1.4031966

    Article  Google Scholar 

  11. Koseki H (1989) Combustion properties of large liquid pool fires. Fire Technol 25(3):241–255. doi:10.1007/BF01039781

    Article  Google Scholar 

  12. Love ND, Parthasarathy RN, Gollahalli SR (2009) Rapid characterization of radiation and pollutant emissions of biodiesel and hydrocarbon liquid fuels. J Energy Res Technol 131(1):012202. doi:10.1115/1.3068345

    Article  Google Scholar 

  13. Tran V, Morton C, Parthasarathy RN, Gollahalli SR (2014) Pool fires of biofuels and their blends with petroleum diesel. Int J Green Energy 11(6):595–610. doi:10.1080/15435075.2013.787426

    Article  Google Scholar 

  14. Dhamale N, Parthasarathy RN, Gollahalli SR (2011) Effects of turbulence on the combustion properties of partially premixed flames of canola methyl ester and diesel blends. J Combust 2011:1–13. doi:10.1155/2011/697805

    Article  Google Scholar 

  15. Li Y-H, Wu C-Y, Lien Y-S, Chao Y-C (2010) Development of a high-flame-luminosity thermophotovoltaic power system. Chem Eng J 162(1):307–313. doi:10.1016/j.cej.2010.04.051

    Article  Google Scholar 

  16. Thornock J, Tovar D, Tree DR, Xue Y, Tsiava R (2015) Radiative intensity, no emissions, and burnout for oxygen enriched biomass combustion. Proc Combust Inst 35(3):2777–2784. doi:10.1016/j.proci.2014.06.148

    Article  Google Scholar 

  17. Mungekar HP, Atreya A (2006) Flame radiation and soot emission from partially premixed methane counterflow flames. J Heat Transf 128(4):361. doi:10.1115/1.2165204

    Article  Google Scholar 

  18. Augustine C, Tester JW (2009) Hydrothermal flames: from phenomenological experimental demonstrations to quantitative understanding. J Supercrit Fluids 47(3):415–430. doi:10.1016/j.supflu.2008.10.003

    Article  Google Scholar 

  19. Pourhoseini SH, Moghiman M (2014) Experimental and numerical investigation into enhancing radiation characteristics of natural-gas flame by injection of micro kerosene droplets. J Enhanc Heat Transf 21(6):407–423. doi:10.1615/JEnhHeatTransf.2015011735

    Article  Google Scholar 

  20. Bressloff NW, Moss JB, Rubini PA (1997) Differential total absorptivity solution to the radiative transfer equation for mixtures of combustion gases and soot. Numer Heat Transf Part B Fundam 31(1):43–60. doi:10.1080/10407799708915098

    Article  Google Scholar 

  21. Saji CB, Balaji C, Sundararajan T (2008) Investigation of soot transport and radiative heat transfer in an ethylene jet diffusion flame. Int J Heat Mass Transf 51(17–18):4287–4299. doi:10.1016/j.ijheatmasstransfer.2008.02.010

    Article  MATH  Google Scholar 

  22. Paul SC, Paul MC (2010) Radiative heat transfer during turbulent combustion process. Int Commun Heat Mass Transf 37(1):1–6. doi:10.1016/j.icheatmasstransfer.2009.10.005

    Article  MathSciNet  Google Scholar 

  23. Kumar P (2012) An experimental and numerical study of NO x formation mechanisms in NH3-H2-Air flames. Graduate Theses and Dissertations. Iowa State University. Paper 12821. http://lib.dr.iastate.edu/etd/12821

  24. Lee JCY, Malte PC, Benjamin MA (2003) Low NO x combustion for liquid fuels: atmospheric pressure experiments using a staged prevaporizer-premixer. J Eng Gas Turbines Power 125(4):861–871. doi:10.1115/1.1584476

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Moghiman.

Additional information

Technical Editor: Fernando Marcelo Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boghrati, M., Moghiman, M. & Pourhoseini, S.H. The impact of C/H on the radiative and thermal behavior of liquid fuel flames and pollutant emissions. J Braz. Soc. Mech. Sci. Eng. 39, 2395–2403 (2017). https://doi.org/10.1007/s40430-017-0808-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0808-7

Keywords

Navigation