Skip to main content
Log in

Assessment of alternative methods of preparing internal combustion engine cylinder bore surfaces for frictional improvement

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

A smooth polished surface has a great potential to lead to low friction and wear in internal combustion engines (ICE). Alternative methods to create a smooth dimpled surface on a hypereutectic aluminium (aluminium die cast) ADC12 substrate for frictional improvements are evaluated in this study using an oscillating wear tester (OWT). It was found that the samples embossed with #480 grit sandpaper and sandblasted with #240 sieve sand samples had the more desired properties with a reduced coefficient of friction (μ) of 23% at low sliding speeds before hydrodynamic lubrication mode and 6.9% in the fully hydrodynamic lubrication region. Although samples cast with added graphite powder had much lower friction, it had insufficient oil retention volume and resistance against catastrophic wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Kaufman JG (2000) Introduction to aluminum alloys and tempers. ASM International, Geauga

    Google Scholar 

  2. Plotkowski AJ (2012) Refinement of the cast microstructure of hypereutectic aluminum-silicon alloys with an applied electric potential. Master thesis, Grand Valley State University

  3. Yasmin T, Khalid AA, Haque M (2004) Tribological (wear) properties of aluminum–silicon eutectic base alloy under dry sliding condition. J Mater Process Technol 153:833–838

    Article  Google Scholar 

  4. ZolotorevskyVS Belov NA, Glazoff MV (2010) Casting aluminum alloys. Elsevier, Amsterdam

    Google Scholar 

  5. Warmuzek M (2004) Aluminum-silicon casting alloys: an atlas of microfractographs. ASM International, Geauga

    Google Scholar 

  6. Olsson H et al (1998) Friction models and friction compensation. Eur J Control 4(3):176–195

    Article  MATH  Google Scholar 

  7. Persson B (2013) Sliding friction: physical principles and applications. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  8. Xia X et al (2008) Tribological performance of an Al—Si alloy lubricated in the boundary regime with zinc dialkyldithiophosphate and molybdenum dithiocarbamate additives. Proc Inst Mech Eng Part J J Eng Tribol 222(3):305–314

    Article  Google Scholar 

  9. Suzuki Y (1988) Surface modifications of pistons and cylinder liners. J Mater Eng 10(1):61–67

    Article  Google Scholar 

  10. León FP (2002) Evaluation of honed cylinder bores. CIRP Ann Manuf Technol 51(1):503–506

    Article  Google Scholar 

  11. Malburg MC, Raja J, Whitehouse DJ (1993) Characterization of surface texture generated by plateau honing process. CIRP Ann Manuf Technol 42(1):637–639

    Article  Google Scholar 

  12. He X et al (2015) Tribological behavior of femtosecond laser textured surfaces of 20CrNiMo/beryllium bronze tribo-pairs. Ind Lubr Tribol 67(6):630–638

    Article  Google Scholar 

  13. Armstrong-Helouvry B (2012) Control of machines with friction, vol 128. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  14. Hermann S and Ruggeri F (2016) Modelling wear degradation in cylinder liners. Discussion Paper, SonderForschungSbereich (SFB) 823:433

  15. Howell-Smith S et al (2014) Reducing in-cylinder parasitic losses through surface modification and coating. Proc Inst Mech Eng Part D J Automob Eng 228:0954407013512626

  16. Brinksmeier E (2013) Tool making. micro metal forming. Springer, Berlin, pp 201–310

    Chapter  Google Scholar 

  17. Ortner H et al (2002) Corrosion of transversely heated graphite tubes by iron and lanthanum matrices. Spectrochim Acta Part B 57(2):243–260

    Article  Google Scholar 

  18. Lu H et al (2005) Effect of surface roughness on stain resistance of dental resin composites. J Esthet Restor Dent 17(2):102–108

    Article  Google Scholar 

  19. Smith GT (2008) Cutting tool technology: industrial handbook. Springer Science & Business Media, Berlin

    Google Scholar 

  20. Singh G (2013) Modeling, analysis, evaluation and experimental investigation of abrasive blasting process. Thapar University Patiala, Patiala

    Google Scholar 

  21. Martin SJ et al (1993) Effect of surface roughness on the response of thickness-shear mode resonators in liquids. Anal Chem 65(20):2910–2922

    Article  Google Scholar 

  22. Iqbal M (2014) Tribology: science of lubrication to reduce friction and wear. Int J Mech Eng Robot Res 3(3):648

    Google Scholar 

  23. Bennett J, Dancy J (1981) Stylus profiling instrument for measuring statistical properties of smooth optical surfaces. Appl Opt 20(10):1785–1802

    Article  Google Scholar 

  24. Braaksma H et al (2006) Sedimentological, petrophysical, and seismic characterization of an Upper Jurassic shoreface-dominated shelf margin (the Boulonnais, northern France). J Sediment Res 76(1):175–199

    Article  Google Scholar 

  25. Elfick APD (1999) A tribological assessment of the porous coated anatomic total hip replacement. Durham University, Durham

    Google Scholar 

  26. Stewart JH, Briggs GM (1981) The effect of essential-fatty-acid deficiency on the activity of liver phosphatidate phosphatase in rats. Biochem J 198(2):413

    Article  Google Scholar 

  27. Akhlaghi F, Zare-Bidaki A (2009) Influence of graphite content on the dry sliding and oil impregnated sliding wear behavior of Al 2024–graphite composites produced by in situ powder metallurgy method. Wear 266(1):37–45

    Article  Google Scholar 

  28. Cremaschi L, Hwang Y, Radermacher R (2005) Experimental investigation of oil retention in air conditioning systems. Int J Refrig 28(7):1018–1028

    Article  Google Scholar 

  29. Findik F (2014) Latest progress on tribological properties of industrial materials. Mater Des 57:218–244

    Article  Google Scholar 

  30. Ho C-M, Tai Y-C (1998) Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu Rev Fluid Mech 30(1):579–612

    Article  Google Scholar 

  31. Cogdell JD (2008) A convolved multi-Gaussian probability distribution for surface topography applications. Precis Eng 32(1):34–46

    Article  MathSciNet  Google Scholar 

  32. Checo HM et al (2014) Moving textures: simulation of a ring sliding on a textured liner. Tribol Int 72:131–142

    Article  Google Scholar 

  33. Gahr KHZ, Mathieu M, Brylka B (2007) Friction control by surface engineering of ceramic sliding pairs in water. Wear 263:920–929

    Article  Google Scholar 

  34. Costa H, Hutchings I (2007) Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions. Tribol Int 40(8):1227–1238

    Article  Google Scholar 

  35. Dobrica MB et al (2010) Optimizing surface texture for hydrodynamic lubricated contacts using a mass-conserving numerical approach. Proc Inst Mech Eng Part J J Eng Tribol 224(8):737–750

    Article  Google Scholar 

  36. Kovalchenko A et al (2004) The effect of laser texturing of steel surfaces and speed-load parameters on the transition of lubrication regime from boundary to hydrodynamic. Tribol Trans 47(2):299–307

    Article  Google Scholar 

  37. Griffiths B (2001) Manufacturing surface technology: surface integrity and functional performance. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their deep gratitude to Universiti Malaysia Pahang (UMP) under RDU160319 and Nelson Mandela Metropolitan University for providing the laboratory facilities and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kadirgama.

Additional information

Technical Editor: Márcio Bacci da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadirgama, K., Ramasamy, D., El-Hossein, K.A. et al. Assessment of alternative methods of preparing internal combustion engine cylinder bore surfaces for frictional improvement. J Braz. Soc. Mech. Sci. Eng. 39, 3591–3605 (2017). https://doi.org/10.1007/s40430-017-0789-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0789-6

Keywords

Navigation