Simulation of ablation in composites via an interface tracking method

  • Humberto Araujo MachadoEmail author
  • Sonia Fonseca Costa e Silva
  • Edison Bittencourt
Technical Paper


This work is an extension of a previous work where the two-dimensional computational simulation of the ablative process in composites for rocket thermal protection systems was presented. The numerical method employs an interface tracking method to simulate the moving front problem that appears in ablation. Two moving fronts were considered, the char layer formation and the pyrolysis front. A complementary model that considers temperature dependence for the reaction rate in the pyrolysis is also tested. The results are compared with some experimental data for quartz-phenolic and carbon-phenolic resin samples exposed to a plasma jet, showing a much better agreement than the traditional one-front mode, allowing a more accurate dimensioning of rocket thermal protection systems.


Ablation Composite Computational simulation Interface tracking Moving boundary Thermal protection system 

List of symbols


Specific heat, J/kg K


Convection heat transfer coefficient, W/m2 K


Thermal conductivity, W/m K


Nusselt number


Pressure, Pa


Heat flux, W/m2


Temperature, K


Time, s


Interface velocity, m/s

Greek symbols




Density, kg/m3


Stefan–Boltzmann constant, 5.670 × 10−8 W/m2 K4



The author would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Brazilian Federal Agency for Science and Technology, for the financial support during this work.


  1. 1.
    Rogan JE, Hurwicz H (1973) High-temperature thermal protection systems. In: Rohsenow WM, Hartnett JP (eds) Handbook of heat transfer. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Duffa G (2013) Ablative thermal protection system modeling. AIAA Education Series, Reston, VA. doi: 10.2514/4.101717
  3. 3.
    Machado HA (2013) Simulation of ablation in a sounding rocket thermal protection system via an interface tracking method with two moving fronts. J Aerosp Technol Manag São José dos Campos 5(4):409–420. doi: 10.5028/jatm.v5i4.262 CrossRefGoogle Scholar
  4. 4.
    Da Costa LEVL, De Mello FC, Pardini LC (1996) Viability study of thermal protection for SARA platform. IAE/CTA, Technical note NT-130-ASE-N/96, IAE/CTA, São José dos Campos, Brazil (in Portuguese/restricted)Google Scholar
  5. 5.
    Koo JH, Ho DWH, Ezekoye OA (2006) A review of numerical and experimental characterization of thermal protection materials—Part I. Numerical modeling. In: Proceedings of 42nd AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit, Sacramento, CA. doi: 10.2514/MJPC06
  6. 6.
    Machado HA, Pessoa-Filho JB, (2007a) Aerodynamic heating at hypersonic speeds. In: Proceedings of 19th Brazilian congress of mechanical engineering, Brasília, BrazilGoogle Scholar
  7. 7.
    Machado HA, Pessoa-Filho JB (2007b) Aerodynamic heating on VSB-30. In: ESA symposium, Visby, SwedenGoogle Scholar
  8. 8.
    Machado HA (2006) Thermal protection for aerodynamic heating of the SARA suborbital platform, CONEM 2006, Recife, Brazil (in Portuguese)Google Scholar
  9. 9.
    Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100:25–37. doi: 10.1016/0021-9991(92)90307-K CrossRefzbMATHGoogle Scholar
  10. 10.
    Amar AJ, Blakwell BF, Edwards JR (2007) One-dimensional ablation with pyrolysis gas flow using a full Newton’s method and finite control. In: Proceedings of 39th AIAA thermophysics conference, Miami, FL. doi: 10.2514/MTC07
  11. 11.
    Silva DVFMR (2001) Estimative of thermal properties of ablative materials, M.Sc. Dissertation, Federal University of Rio de Janeiro—UFRJ, Rio de Janeiro, Brazil (in Portuguese)Google Scholar
  12. 12.
    Juric D (1996) Computations of phase change. PhD. Thesis, University of Michigan, MichiganGoogle Scholar
  13. 13.
    Sias DF. Hybrid solutions for heat transfer on ablative thermal protection system, Dsc. Thesis, Federal University of Rio de Janeiro, Brazil (in Portuguese)Google Scholar
  14. 14.
    Ruperti Jr NJ (1991) Solution of a one-dimensional ablation model. M.Sc. Dissertation, national institute for space research—INPE, São José dos Campos, Brazil (in Portuguese)Google Scholar
  15. 15.
    Machado HA (2012) Simulation of Ablation in a composite thermal protection system via an interface tracking method. J Aerosp Technol Manag 4(3):331–340. doi: 10.5028/jatm.v4i3.174 CrossRefGoogle Scholar
  16. 16.
    Barros de EA (2008) Thermal plasma for ablation in materials used in heat shield of space systems. M.Sc. Dissertation, ITA, São José dos Campos, Brazil (in Portuguese)Google Scholar
  17. 17.
    Pulickel SVA, Chaudhari MB (2011) Pyrolysis modelling and experimentation for thermophysical properties of char formed from ablative material. Int J Appl Res Mech Eng (IJARME) 1(2):97–101Google Scholar
  18. 18.
    Gregori ML, Barros de EA, Petraconi Filho G, Costa SF, Pardini LC (2008) Properties of quartz-phenolic composites for thermal protection systems. In: 59th IAC congress, Glascow, ScotlandGoogle Scholar
  19. 19.
    Tick SJ, Huson GR, Griese R (1965) Design of ablative thrust chambers and their materials. J Spacecr Rocket 2(3):325–331. doi: 10.2514/3.28179 CrossRefGoogle Scholar
  20. 20.
    Williams SD, Curry DM (1992) Thermal protection materials—thermophysical property data. NASA Reference Publication 1289, Houston, TexasGoogle Scholar
  21. 21.
    Savvatimskii AV (2003) Melting point of graphite and liquid carbon. Phys Usp 46(12):1295–1303. doi: 10.1070/PU2003v046n12ABEH001699 CrossRefGoogle Scholar
  22. 22.
    Khlybov VI, Makhankov SA (2008) Experimental studies to determine ablation parameters and emissivity of thermal-protective materials. Technical Report, OAO –Makeyev GRT (Restricted)Google Scholar
  23. 23.
    Sutton K (1970) An experimental study of a carbon-phenolic ablation material. NASA TN D-5930, September 1970Google Scholar
  24. 24.
    Farmer RW (1974) Extended heating ablation of carbon phenolic and silica phenolic. AD/A-000416, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio, September 1974Google Scholar
  25. 25.
    Russel GW (1996) Evaluation of thermal of an epoxy composite using a complex modeling technique. In: AIAA, ASME and ASEE, joint propulsion conference and exhibit, 32nd, Lake Buena Vista, FL, July 103, 1996. doi: 10.2514/MJPC96

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2017

Authors and Affiliations

  • Humberto Araujo Machado
    • 1
    Email author
  • Sonia Fonseca Costa e Silva
    • 1
  • Edison Bittencourt
    • 2
  1. 1.Instituto de Aeronáutica e Espaço-IAESão Jose Dos CamposBrazil
  2. 2.Faculdade de Engenharia QuímicaUniversidade Estadual de Campinas-UNICAMPCampinasBrazil

Personalised recommendations