Experiment and simulation research on abrasive water jet nozzle wear behavior and anti-wear structural improvement

  • Xiaochen ChenEmail author
  • Songsheng Deng
  • Jinfa Guan
  • Weixing Hua
Technical Paper


As a non-traditional machining technology, abrasive water jet is widely used to cut almost any material without obvious heat damage and thermal stress. However, the impact of high-speed abrasive particles on the inner wall of nozzles causes serious nozzle wear. The development of nozzle wear research has been limited by the wear monitoring approaches. In this present study, a series of wear tests and numerical simulations are performed on the pre-mixed AWJ nozzles under the same conditions. The effects of cylinder length and inlet angle on wear behavior are investigated. By comparing the simulation results with the test results, it is found that the simulation method can be effectively used to study the wear characteristics, which shows that the simulation method can improve the nozzle wear research by making up for the disadvantages of the experimental research method. Finally, a new dual gradient nozzle structure is put forward, and its wear performance is analyzed by numerical simulation. The simulation results show that for the pre-mixed AWJ nozzle with inlet angle more than 30°, the new nozzle structure can reduce the erosion ratio more than 88.14%. Thus, the dual gradient nozzle structure can reduce the nozzle wear and improve nozzle life significantly without sacrificing the cutting efficiency.


Abrasive water jet Nozzle wear Numerical simulation Structural improvement 



This work is supported by the project from General Logistics Department of People’s Liberation Army (No.YX213C208).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ahmed DH, Naser J, Deam RT (2016) Particles impact characteristics on cutting surface during the abrasive water jet machining: numerical study. J Mater Process Technol 232:116–130. doi: 10.1016/j.jmatprotec.2016.01.032 CrossRefGoogle Scholar
  2. 2.
    Haghbin N, Spelt JK, Papini M (2015) Abrasive waterjet micro-machining of channels in metals: comparison between machining in air and submerged in water. Int J Mach Tool Manuf 88:108–117. doi: 10.1016/j.ijmachtools.2014.09.012 CrossRefGoogle Scholar
  3. 3.
    Li H, Wang J (2015) An experimental study of abrasive waterjet machining of Ti-6Al-4V. Int J Adv Manuf Technol 81(1):361–369. doi: 10.1007/s00170-015-7245-5 CrossRefGoogle Scholar
  4. 4.
    Narayanan C, Balz R, Weiss DA, Heiniger KC (2013) Modelling of abrasive particle energy in water jet machining. J Mater Process Technol 213(12):2201–2210. doi: 10.1016/j.jmatprotec.2013.06.020 CrossRefGoogle Scholar
  5. 5.
    Zohoor M, Nourian SH (2011) Development of an algorithm for optimum control process to compensate the nozzle wear effect in cutting the hard and tough material using abrasive water jet cutting process. Int J Adv Manuf Technol 61(9–12):1019–1028. doi: 10.1007/s00170-011-3761-0 Google Scholar
  6. 6.
    Srinivasu DS, Ramesh Babu N (2008) A neuro-genetic approach for selection of process parameters in abrasive waterjet cutting considering variation in diameter of focusing nozzle. Appl Soft Comput 8(1):809–819. doi: 10.1016/j.asoc.2007.06.007 CrossRefGoogle Scholar
  7. 7.
    Rozario Jegaraj JJ, Ramesh Babu N (2007) A soft computing approach for controlling the quality of cut with abrasive waterjet cutting system experiencing orifice and focusing tube wear. J Mater Process Technol 1–3:217–227CrossRefGoogle Scholar
  8. 8.
    Hashish M (1991) Optimization factors in abrasive-waterjet machining. J Manuf Sci Eng 113(1):29–37CrossRefGoogle Scholar
  9. 9.
    Sun J, Liu C, Tian J, Feng B (2012) Erosion behavior of B4C based ceramic nozzles by abrasive air-jet. Ceram Int 38(8):6599–6605. doi: 10.1016/j.ceramint.2012.05.045 CrossRefGoogle Scholar
  10. 10.
    Fowler G, Pashby IR, Shipway PH (2009) The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V. Wear 266(7–8):613–620. doi: 10.1016/j.wear.2008.06.013 CrossRefGoogle Scholar
  11. 11.
    Gent M, Menéndez M, Torno S, Toraño J, Schenk A (2012) Experimental evaluation of the physical properties required of abrasives for optimizing waterjet cutting of ductile materials. Wear 284–285:43–51. doi: 10.1016/j.wear.2012.02.012 CrossRefGoogle Scholar
  12. 12.
    Nanduri M, Taggart DG, Kim TJ (2000) A study of nozzle wear in abrasive entrained water jetting environment. J Tribol 2:465–471CrossRefGoogle Scholar
  13. 13.
    Nanduri M, Taggart DG, Kim TJ (2002) The effects of system and geometric parameters on abrasive water jet nozzle wear. Int J Mach Tool Manuf 42(5):615–623. doi: 10.1016/S0890-6955(01)00147-X CrossRefGoogle Scholar
  14. 14.
    Hashish M (1994) Observations of wear of abrasive-waterjet nozzle materials. J Tribol 116(3):439–444. doi: 10.1115/1.2928861 CrossRefGoogle Scholar
  15. 15.
    Kovacevic R, Wang L, Zhang Y (1994) Identification of abrasive waterjet nozzle wear based on parametric spectrum estimation of acoustic-signal. Proc Inst Mech Eng B J Eng 208(3):173–181CrossRefGoogle Scholar
  16. 16.
    Srinivasu DS, Babu NR (2008) An adaptive control strategy for the abrasive waterjet cutting process with the integration of vision-based monitoring and a neuro-genetic control strategy. Int J Adv Manuf Technol 38(5):514–523. doi: 10.1007/s00170-007-1294-3 CrossRefGoogle Scholar
  17. 17.
    Kovacevic R (1991) A new sensing system to monitor abrasive waterjet nozzle wear. J Mater Process Technol 28(1):117–125. doi: 10.1016/0924-0136(91)90211-V CrossRefGoogle Scholar
  18. 18.
    Hreha P, Radvanská A, Cárach J, Lehocká D, Monková K, Krolczyk G, Ruggiero A, Samardzić I, Kozak D, Hloch S (2014) Monitoring of focusing tube wear during abrasive waterjet (AWJ) cutting of AISI 309. Metalurgija 4:533–536Google Scholar
  19. 19.
    Zuo W, Lu Y, Zhao J, Liu Y, Xia B (2012) The novel idea of experiment study on the wear mechanism of nozzles. J Sichuan Univ (Eng Sci Ed) 44(1):196–201Google Scholar
  20. 20.
    Mostofa MG, Kil KY, Hwan AJ (2010) Computational fluid analysis of abrasive waterjet cutting head. J Mech Sci Technol 24(1):249–252. doi: 10.1007/s12206-009-1142-5 CrossRefGoogle Scholar
  21. 21.
    Wang R, Wang M (2010) A two-fluid model of abrasive waterjet. J Mater Process Technol 210(1):190–196. doi: 10.1016/j.jmatprotec.2009.06.007 CrossRefGoogle Scholar
  22. 22.
    Kowsari K, Nouraei H, Samareh B, Papini M, Spelt JK (2016) CFD-aided prediction of the shape of abrasive slurry jet micro-machined channels in sintered ceramics. Ceram Int 42(6):7030–7042. doi: 10.1016/j.ceramint.2016.01.091 CrossRefGoogle Scholar
  23. 23.
    Kim JH, Joo HG, Lee KY (2015) Simulation of solid particle erosion in WC-Ni coated wall using CFD. J Mater Process Technol 224:240–245. doi: 10.1016/j.jmatprotec.2015.01.022 CrossRefGoogle Scholar
  24. 24.
    Parsi M, Najmi K, Najafifard F, Hassani S, McLaury BS, Shirazi SA (2014) A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications. J Nat Gas Sci Eng 21:850–873. doi: 10.1016/j.jngse.2014.10.001 CrossRefGoogle Scholar
  25. 25.
    Nguyen VB, Nguyen QB, Liu Z, Wan S, Lim CYH, Zhang Y (2014) A combined numerical–experimental study on the effect of surface evolution on the water–sand multiphase flow characteristics and the material erosion behavior. Wear 319(1–2):96–109. doi: 10.1016/j.wear.2014.07.017 CrossRefGoogle Scholar
  26. 26.
    Jafari M, Mansoori Z, Saffar Avval M, Ahmadi G, Ebadi A (2014) Modeling and numerical investigation of erosion rate for turbulent two-phase gas–solid flow in horizontal pipes. Powder Technol 267:362–370. doi: 10.1016/j.powtec.2014.08.004 CrossRefGoogle Scholar
  27. 27.
    Sun J, Liu C, Lin H, Li B (2016) Effect of mechanical properties and impact angles on erosion behavior of B4C/TiB2 matrix ceramic nozzle materials. Ceram Int 42(7):8826–8832. doi: 10.1016/j.ceramint.2016.02.127 CrossRefGoogle Scholar
  28. 28.
    Deng J (2009) Wear behaviors of ceramic nozzles with laminated structure at their entry. Wear 266(1–2):30–36. doi: 10.1016/j.wear.2008.05.012 CrossRefGoogle Scholar
  29. 29.
    Hashish M (1987) Modified model for erosion. In: Seventh international conference on erosion by liquid and solid impact, CambridgeGoogle Scholar
  30. 30.
    Lian X, Jiang M (2014) Erosion wear of high alumina brick impacted by erodent particles with different shapes based on finite element method. J Chin Ceram Soc 42(6):761–767. doi: 10.7521/j.issn.0454-5648.2014.06.14 Google Scholar
  31. 31.
    Gavrilov IY, Popov VV, Sorokin IY, Tishchenko VA, Khomyakov SV (2014) A contactless technique for determining the average sizes of erosion-hazardous droplets in polydisperse wet steam flow. Therm Eng 61(8):577–584. doi: 10.1134/s0040601514080072 CrossRefGoogle Scholar
  32. 32.
    Zhang J, Han Z, Yin W, Wang H, Ge C, Jiang J (2013) Numerical experiment of the solid particle erosion of bionic configuration blade of centrifugal fan. Acta Metal Sin (Engl Lett) 26(1):16–24. doi: 10.1007/s40195-012-0058-8 CrossRefGoogle Scholar
  33. 33.
    Wang P, Mu H (2011) Random-walk model simulation of air pollutant dispersion in atmospheric boundary layer in China. Environ Monit Assess 172(1):507–515. doi: 10.1007/s10661-010-1350-6 CrossRefGoogle Scholar
  34. 34.
    Song M, Wu B, Chen K, Zhang X, Wang J (2016) Simulating the wake flow effect of wind turbines on velocity and turbulence using particle random walk method. Energy 116(1):583–591. doi: 10.1016/ CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2017

Authors and Affiliations

  1. 1.Department of Military Oil Supply EngineeringPeople’s Liberation Army Logistical Engineering UniversityChongqingChina

Personalised recommendations