Advertisement

Rapid prototyping of microfluidic chips using laser-cut double-sided tape for electrochemical biosensors

  • Patricia Khashayar
  • Ghassem Amoabediny
  • Bagher Larijani
  • Morteza Hosseini
  • Steven Van Put
  • Rik Verplancke
  • Jan  Vanfleteren Email author
Technical Paper

Abstract

Nowadays, microfluidic technologies have widely been employed in developing point-of-care diagnostics to address global health issues because of their potential advantages of low sample and reagent consumption, high throughput and sensitivity, large surface-to-volume ratio, and other benefits related to miniaturization. However, the fabrication of microfluidic channels is commonly costly and requires laboratory-intensive cleaning, photolithography, and etching or baking steps in cleanroom environments, making it difficult to modify. Besides, proper channel enclosure without deforming small features or without clogging of the channel during the bonding process is challenging. The present article aims to demonstrate a cheap, reliable, and rapid method for the fabrication of microfluidic channels using double-sided tapes, enabling not only highly uniform cross-sectional dimensions along the microfluidic channels but also proper adhesion in hybrid systems, composed of different layers. In other words, this technique provides a single-step integration of electrochemical sensors in a microfluidic chip, which could be useful for rapid and low-cost fabrication of microfluidic-based electrochemical sensors.

Keywords

Microfluidic Point-of-care Biosensors 

References

  1. 1.
    Hua J, Wang SQ, Wanga L, Lib F, Pingguan-Murphye B, Lub TJ, Xua F (2014) Advances in paper-based point-of-care diagnostics. Biosens Bioelectron 54:585–597CrossRefGoogle Scholar
  2. 2.
    Hawkins KR, Weigl BH (2010) Microfluidic diagnostics for low-resource settings. In: Becker H, Wang W (eds) Microfluidics, BioMEMS, and medical microsystems Viii. Proceedings of the SPIE, vol 7593, pp 75930L1–L15Google Scholar
  3. 3.
    Nilghaz A, Wicaksono DH, Gustiono D, Abdul Majid FA, Supriyanto E, Abdul Kadir MR (2012) Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab Chip 12:209–218CrossRefGoogle Scholar
  4. 4.
    Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984CrossRefGoogle Scholar
  5. 5.
    Gu P, Liu K, Chen H, Nishida T, Fan ZH (2011) Chemical-assisted bonding of thermoplastics/elastomer for fabricating microfluidic valves. Anal Chem 83:446–452CrossRefGoogle Scholar
  6. 6.
    Mitra SK, Chakraborty S (2012) Microfluidics and nanofluidics handbook. CRC Press/Taylor and Francis, NovatoGoogle Scholar
  7. 7.
    Flachsbart BR, Wong K, Iannacone JM, Abante EN, Vlach RL, Rauchfuss PA et al (2006) Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. Lab Chip 6(5):667–674CrossRefGoogle Scholar
  8. 8.
    Lin R, Burns MA (2005) Surface-modified polyolefin microfluidic devices for liquid handling. J Micromech Microeng 15:2156–2162CrossRefGoogle Scholar
  9. 9.
    Zhang W, Lin S, Wang C, Hu J, Li C, Zhuang Z, Zhou Y et al (2009) PMMA/PDMS valves and pumps for disposable microfluidics. Lab Chip 9:3088–3094CrossRefGoogle Scholar
  10. 10.
    Sunkara V, Park DK, Hwang H, Chantiwas R, Soper SA, Cho YK (2011) Simple room temperature bonding of thermoplastics and poly(dimethylsiloxane). Lab Chip 11:962–965CrossRefGoogle Scholar
  11. 11.
    Mehta G, Lee J, Cha W, Tung YC, Linderman JJ, Takayama S (2009) Hard top soft bottom microfluidic devices for cell culture and chemical analysis. Anal Chem 81:3714–3722CrossRefGoogle Scholar
  12. 12.
    Steigert J, Haeberle S, Brenner T, Müller C, Steinert CP, Koltay P et al (2007) Rapid prototyping of microfluidic chips in COC. J Micromech Microeng 17(2)Google Scholar
  13. 13.
    Lee SW, Lee SS (2008) Shrinkage ratio of PDMS and its alignment method for the wafer level process. Microsyst Technol 14(2):205–208CrossRefGoogle Scholar
  14. 14.
    Moral-Vico J, Barallat J, Abad L, Olivé-Monllau R, Xavier Muñoz-Pascual F, Galán Ortega A, del Campo FJ, Baldrich E (2015) Dual chronoamperometric detection of enzymatic biomarkers using magnetic beads and a low-cost flow cell. Biosens Bioelectron 69:328–336CrossRefGoogle Scholar
  15. 15.
    Nath P, Fung D, Kunde YA, Zeytun A, Brancha B, Goddarda G (2010) Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes. Lab Chip 10:2286–2291CrossRefGoogle Scholar
  16. 16.
    Hwang JS, Kim SY, Kim YS, Song HJ, Park CY, Kim JD (2015) Implementation of PCB-based PCR chip using double-sided tape. IJCA 8(2):117–124CrossRefGoogle Scholar
  17. 17.
    Khashayar P, Amoabediny Gh, Larijani B, Hosseini M, Verplancke R, Schaubroek D, De Keersmaecker M, Adriaens A, Vanfleteren J (2016) Characterization of gold nanoparticle layer deposited on gold electrode by various techniques for improved sensing abilities. Biointerface Res Appl Chem 6(4):1380–1390Google Scholar
  18. 18.
    Mair DA, Geiger E, Pisano AP, Frechet JMJ, Svec F (2006) Injection molded microfluidic chips featuring integrated interconnects. Lab Chip 6:1346–1354CrossRefGoogle Scholar
  19. 19.
    Bartholomeusz DA, Boutté RW, Andrade JD (2005) Xurography: rapid prototyping of microstructures using a cutting plotter. J Microelectromech Syst 14(6):1364–1374Google Scholar
  20. 20.
    Kim J, Shin Y, Song S, Lee J, Kim J (2014) Rapid prototyping of multifunctional microfluidic cartridges for electrochemical biosensing platforms. Sens Actuators B Chem 202:60–66CrossRefGoogle Scholar
  21. 21.
    Luo LW, Teo CY, Ong WL, Tang KC, Cheow LF, Yobas L (2007) Rapid prototyping of microfluidic systems using a laser-patterned tape. J Micromech Microeng 17:N107–N111CrossRefGoogle Scholar
  22. 22.
    Patko D, Martonfalvi Z, Kovacs B, Vonderviszt F, Kellermayer M, Horvath R (2014) Microfluidic channels laser-cut in thin double-sided tapes: cost-effective biocompatible fluidics in minutes from design to final integration with optical biochips. Sens Actuators B Chem 196:352–356CrossRefGoogle Scholar
  23. 23.
    Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10CrossRefGoogle Scholar
  24. 24.
    Tsao CW, DeVoe DL (2009) Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluid 6:1–16CrossRefGoogle Scholar
  25. 25.
    Kim J, Surapaneni R, Gale BK (2009) Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite. Lab Chip 9:1290–1293CrossRefGoogle Scholar
  26. 26.
    Mair DA, Rolandi M, Snauko M, Noroski R, Svec F, Fréchet JMJ (2007) Room-temperature bonding for plastic high-pressure microfluidic chips. Anal Chem 79(13):5097–5102CrossRefGoogle Scholar
  27. 27.
    Bruus H (2011) Basic flow solutions. In: Bruus H (ed) Theoretical microfluidics, 4th edn. Oxford University Press, New YorkGoogle Scholar
  28. 28.
    Hawkins KR, Steedman MR, Baldwin RR, Fu E, Ghosal S, Yager P (2007) A method for characterizing adsorption of flowing solutes to microfluidic device surfaces. Lab Chip 7(2):281–285CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2016

Authors and Affiliations

  • Patricia Khashayar
    • 1
    • 2
    • 3
  • Ghassem Amoabediny
    • 4
    • 5
  • Bagher Larijani
    • 6
  • Morteza Hosseini
    • 1
  • Steven Van Put
    • 2
  • Rik Verplancke
    • 2
  • Jan  Vanfleteren
    • 2
    Email author
  1. 1.Nanobiotechnology Department, Faculty of New Sciences and TechnologiesUniversity of TehranTehranIran
  2. 2.Center for Microsystems TechnologyImec and Ghent UniversityGhentBelgium
  3. 3.Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
  4. 4.Department of Biotechnology, Faculty of Chemical EngineeringSchool of Engineering, University of TehranTehranIran
  5. 5.Nanobiotechnology DepartmentResearch Center for New Technology in Life Sciences Engineering, University of TehranTehranIran
  6. 6.Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran

Personalised recommendations