Skip to main content
Log in

Numerical simulation of flow interaction between stationary and downstream elastically mounted cylinders in tandem at low Reynolds numbers

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Despite the simplicity of the geometry of the circular cylinders, the uniform flow around them is complex, since it may induce unsteady forces on structures associated with vortex shedding. This paper describes the study of two circular cylinders (the downstream one is elastically mounted in transversal direction) in tandem arrangement subject to bi-dimensional uniform laminar flows at low Reynolds numbers. The academic numerical model Ifeinco, which is based on the finite element method and uses a partitioned scheme that considers two-way interaction of fluid flow and structure, has been employed to the analysis. Firstly, both stationary cylinders in tandem arrangement for Re = 100 are analysed for center to center distance between the cylinders, L/D, from 1.5 to 6.0. Results of lift and drag coefficients and Strouhal number are compared with other numerical results and good agreement is found. Secondly, numerical results for L/D = 5.25, considering downstream elastically mounted cylinder, are analysed for Reynolds numbers ranging from 100 to 140. It shows that the resonance occurs for Reynolds numbers between 115 and 120 and the maximum dimensionless amplitude of oscillation is 0.721 for Re = 118.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

c :

Damping coefficient (kg/s)

c s :

Sound velocity (m/s)

C D :

Drag coefficient

C Dmean :

Mean drag coefficient

C L :

Lift coefficient

C Lrms :

Root mean square lift coefficient

D :

Cylinder diameter (m)

f :

Vortex shedding frequency (Hz)

F :

Dynamic force (N)

f n :

Natural frequency (Hz)

k :

Spring stiffness (N/m)

k s :

Surface roughness parameter

K s :

Stability parameter

L :

Distance between cylinders (m)

L c :

Critical distance between cylinders (m)

m :

Mass (kg)

M :

Mass ratio

p :

Pressure (Pa)

Re :

Reynolds number

St :

Strouhal number

t :

Time (m)

U i :

Momentum per volume (i, j = 1, 2) (kg m/s/m3)

U :

Free stream velocity (m/s)

v i :

Fluid velocity (ij = 1, 2) (m/s)

V R :

Reduced velocity

x i :

Coordinate (ij = 1, 2) (m)

w i :

Mesh velocity (ij = 1, 2) (m/s)

Y :

Amplitude of cylinder oscillation (m)

y :

Cylinder displacement (m)

\(\dot{y}\) :

Cylinder velocity (m/s)

\({\ddot{y}}\) :

Cylinder acceleration (m/s2)

α :

Parameter of the Newmark method

δ :

Parameter of the Newmark method

τ ij :

Viscous stress tensor (ij = 1, 2) (Pa)

ω n :

Angular frequency (rad/s)

ρ :

Specific mass (kg/m3)

μ :

Viscosity (kg/ms)

ζ :

Damper ratio

References

  1. Igarashi T (1977) Characteristics of the flow around two circular cylinders arranged in tandem. Bull JSME 24(188):323–331

    Article  Google Scholar 

  2. Zdravkovich MM (1977) Review of flow interference between two circular cylinders in various arrangements. ASME J Fluids Eng 99:618–633

    Article  Google Scholar 

  3. Zdravkovich MM (1987) The effects of interference between circular cylinders in cross flow. J Fluids Struct 1:618–633

    Article  Google Scholar 

  4. Sumner D, Price SJ, Païdoussis MP (2000) Flow-pattern identification for two-staggered circular cylinders in cross-flow. J Fluid Mech 411:263–303

    Article  MATH  Google Scholar 

  5. Didier E (2007) Flow simulation over two circular cylinders in tandem. Comptes Rendus – Mécanique 335(11):696–701

    Article  Google Scholar 

  6. Didier E (2009) Numerical simulation of low Reynolds number flows over two circular cylinders in tandem. In: Conference on modelling fluid flow, Budapest, September 9–12, pp 347–354

  7. Zdravkovich MM (1985) Flow induced oscillations of two interfering circular cylinders. J Sound Vib 101(4):511–521

    Article  Google Scholar 

  8. Brika D, Laneville A (1999) The flow interaction between a stationary cylinder and a downstream flexible cylinder. J Fluids Struct 13:579–606

    Article  Google Scholar 

  9. Assi GRS, Meneghini JR, Aranha JAP, Bearman PW, Casaprima E (2006) Experimental investigation of flow-induced vibration interference between two circular cylinders. J Fluids Struct 22(819):827

    Google Scholar 

  10. Okajima A, Yasui A, Kiwata T, Kimura S (2007) Flow-induced streamwise oscillation of two circular cylinders in tandem arrangement. Int J Heat Fluid Flow 28:552–560

    Article  Google Scholar 

  11. Huera-Huarte FJ, Gharib M (2011) Vortex- and wake-induced vibrations of a tandem arrangement of two flexible circular cylinders with far wake interference. J Fluids Struct 27:824–828

    Article  Google Scholar 

  12. Li J, Chambarel A, Donneaud M, Martin R (1991) Numerical study of laminar flow past one and two circular cylinders. Comput Fluids 19:155–170

    Article  MATH  Google Scholar 

  13. Slaouti A, Stanby PK (1992) Flow around two circular cylinders by the random-vortex method. J Fluids Struct 6:641–670

    Article  Google Scholar 

  14. Mittal S, Kumar V, Raghuvanshi A (1997) Unsteady incompressible flows past two cylinders in tandem and staggered arrangements. Int J Numer Methods Fluids 25:1315–1344

    Article  MATH  Google Scholar 

  15. Meneghini JR, Saltara F, Siqueira CL, Ferrari JA (2001) Numerical simulation of flow interference between two circular cylinders in tandem and side by side arrangements. J Fluids Struct 15:327–350

    Article  Google Scholar 

  16. Sharman B, Lien FS, Davidson L, Norberg C (2005) Numerical predictions of low Reynolds number flows over two tandem circular cylinders. Int J Numer Methods Fluids 47:423–447

    Article  MATH  Google Scholar 

  17. Carmo BS (2005) Estudo numérico do escoamento ao redor de cilindros alinhados. Master Thesis, Escola Politécnica da Universidade de São Paulo

  18. Carmo BS, Meneghini JR (2006) Numerical investigation of the flow around two circular cylinders in tandem. J Fluids Struct 22:979–988

    Article  Google Scholar 

  19. Carmo BS, Sherwin SJ, Bearman PW, Willden RHJ (2011) Flow-induced vibration of a circular cylinder subjected to wake interference at low Reynolds number. J Fluids Struct 27:503–522

    Article  Google Scholar 

  20. Mittal S, Kumar V (2001) Flow-induced oscillations of two cylinders in tandem and staggered arrangements. J Fluids Struct 15:717–736

    Article  Google Scholar 

  21. Papaioannou GV, Yue DKP, Triantafyllou MS, Karniadakis GE (2008) On the effect of spacing on the vortex-induced vibrations of two tandem cylinders. J Fluids Struct 24:833–854

    Article  Google Scholar 

  22. Fredsøe J, Sumer BM (1997) Hydrodynamics around cylindrical structures, vol 12. World Scientific Publishing, Singapore

    MATH  Google Scholar 

  23. Teixeira PRF, Awruch AM (2005) Numerical simulation of fluid-structure interaction using the finite element method. Comput Fluids 34:249–273

    Article  MATH  Google Scholar 

  24. Teixeira PRF, Awruch AM (2001) Three-dimensional simulation of high compressible flows using a multi-time-step integration technique with subcycles. Appl Math Model 25:613–627

    Article  MATH  Google Scholar 

  25. Argyris J, St. Doltsinis J, Wuestenberg H, Pimenta PM (1985) Finite element solution of viscous flow problems. In: Gallagher RH, Carey GF, Oden JT, Zienkiewicz OC (eds) Finite elements in fluids, vol 6. Wiley, New York, pp 89–114

    Google Scholar 

  26. Donea J, Giuliani S, Laval H, Quartapelle L (1982) Finite element solution of the unsteady Navier-Stokes equations by a fractional step method. Comput Methods Appl Mech Eng 33:53–73

    Article  MATH  Google Scholar 

  27. Bathe KJ (1996) Finite element procedures. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  28. Gonçalves RA, Teixeira PRF, Didier E (2012) Numerical simulations of low Reynolds number flows past elastically mounted cylinder. Therm Eng 11(1–2):61–67

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq, Brazil (project 303765/2012-7) and Fundação de Ciência e Tecnologia-FCT, Portugal (SFRH/BPD/37901/2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo R. F. Teixeira.

Additional information

Technical Editor: Marcio S. Carvalho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, P.R.F., Didier, E. Numerical simulation of flow interaction between stationary and downstream elastically mounted cylinders in tandem at low Reynolds numbers. J Braz. Soc. Mech. Sci. Eng. 39, 801–811 (2017). https://doi.org/10.1007/s40430-016-0682-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-016-0682-8

Keywords

Navigation