Skip to main content
Log in

Review of research work in die sinking EDM for machining curved hole

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Manufacturing is one of the most important sectors. It involves various machining operations to be performed on the workpiece, through which the output can be achieved. Global competition calls for quick manufacturing in new product development. Electrical discharge machining (EDM) is one of the sustainable manufacturing techniques available for machining the complex workpieces. Recently EDM development is taking place rapidly. Many researchers have focused on spark generation in EDM for continuous improvement. Electrical discharge machining requires the tool (master pattern) and workpiece (replica of master pattern). It works on the principle of spark erosion process. The generation of spark erosion distinguishes this non-traditional manufacturing method from traditional one. Most of the EDM utilizes the linear travels of head during machining of the workpiece. So, constrained restricted to only horizontal or vertical machining surface irrespective of curved surface machining. This review paper explains the mechanisms and methods adopted for developing the curved hole machining. These mechanisms enhance the utility and applications in the field of aerospace, molding and automobile industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Ids machining (1990) Clearfield, Utah. http://edmmachining.com/history/of/edm. Accessed date 20 Aug 2015

  2. Garg RK, Singh KK, Sachdeva A, Sharma VS, Ojha K, Singh S (2010) Review of research work in sinking EDM and WEDM. Int J Adv Manuf Technol 50:611–624

    Article  Google Scholar 

  3. Pawade MM, Banwait SS (2013) A brief review of die sinking electrical discharge machining process towards automation. Am J Mech Eng 1(2):43–49

    Article  Google Scholar 

  4. Kunieda M, Lauwers B, Rajurkar KP, Schumacherd BM (2005) Advancing EDM through fundamental insight into the process. CIRP Ann Manuf Tech 54(2):64–87

    Article  Google Scholar 

  5. Shrivastava PK, Dubey AK (2014) Electrical discharge machining based hybrid machining processes: a review. Proc Inst Mech Eng, Part B: J Eng Manuf 228(6):799–825

    Article  Google Scholar 

  6. Lok YK, Lee TC (1995) Wire-cut electrical discharge machining of SIALON ceramics. Proceedings of the Seventh International Manufacturing Conference with China. Harbin. China, pp 71–76

  7. Yan M-T, Lai Y-P (2007) Surface quality improvement of wire-EDM using a fine-finish power supply. Int J Mach Tools Manuf 47:16861694

    Google Scholar 

  8. Altpeter F, Perez R (2004) Relevant topics in wire electrical discharge machining control. J Mater Process Technol 149:147–151

    Article  Google Scholar 

  9. Dekeyser WL, Snoeys R (1989) Geometrical accuracy of wire-EDM. Proc of ISEM 9:226–232

  10. Obara H, Ishizu N, Kawai T, Ohsumi T, Hayashi T (2000) Simulation of wire EDM (3rd report). JSEME 34(75):30–37 (in Japanese)

  11. Kruth JP, Froyen L, Stevens L, Dejonghe P (1998) In-process alloying of the white layer of a workpiece machined by die-sinking EDM. IJEM 3:33–38

    Google Scholar 

  12. Aspinwall DK, Dewes RC, Lee HG, Simao J (2003) Electrical discharge surface alloying of Ti and Fe workpiece materials using refractory powder compact electrodes and Cu wire. Ann CIRP 52:151–154

    Article  Google Scholar 

  13. Kibria G, Sarkar BR, Pradhan BB, Bhattacharyya B (2010) Comparative study of different dielectrics for micro-EDM performance during microhole machining of Ti-6Al-4V alloy. Int J Adv Manuf Technol 48:557570

    Article  Google Scholar 

  14. Pham DT, Dimov SS, Bigot S, Ivanov A, Popov K (2004) Micro-EDM recent developments and research issues. J Mater Process Technol 149:5057

    Article  Google Scholar 

  15. Singh S, Bhardwaj A (2011) Review to EDM by using water and powder mixed dielectric fluid. J Min Mater Charact Eng 10:199–230

    Google Scholar 

  16. Aspinwall DK, Dewes RC, Burrows JM, Paul MA (2001) Hybrid high speed machining (HSM): system design and experimental results for grinding/HSM and EDM/HSM. Ann CIRP 50:145–148

    Article  Google Scholar 

  17. Jia ZX, Zhang JH, Ai X (1997) Study on a new kind of combined machining technology of ultrasonic machining and electrical discharge machining. Int J Mach Tools Manuf 37:193–197

    Article  Google Scholar 

  18. Ming W, Zhang G, Li H, Guo J, Zhang Z, Huang Y, Chen Z (2014) A hybrid process model for EDM based on finite-element method and Gaussian process regression. Int J Adv Manuf Technol 74:11971211

    Article  Google Scholar 

  19. Aspinwall DK, Wise MLH, Stout KJ, Goh THA, Zhao FL, El Menshawy MF (1992) Electrical discharge texturing. Int J Mach Tools Manuf 32:183–193

    Article  Google Scholar 

  20. Ho KH, Newman ST (2003) State of the art electrical discharge machining. Int J Mach Tools Manuf 43:1287–1300

    Article  Google Scholar 

  21. Dimla DE, Hopkinson N, Rothe H (2004) Investigation of complex rapid EDM electrodes for rapid tooling applications. Int J Adv Manuf Technol 23:249255

    Article  Google Scholar 

  22. Lajis MA, Radzi HCDM, Amin AKMN (2009) The implementation of Taguchi method on EDM process of tungsten carbide. Eur J Sci Res 26:609617

    Google Scholar 

  23. Durr H, Pilz R, Eleser NS (1999) Rapid tooling of EDM electrodes by means of selective laser sintering. Comput Ind 39:35–45

    Article  Google Scholar 

  24. Hsu CY, Chen DY, Lai MY, Tzou GJ (2008) EDM electrode manufacturing using RP combining electroless plating with electroforming. Comput Ind 38:915–924

    Google Scholar 

  25. Besliu I, Schulze H-P, Coteaa M, Amarandei D (2010) Study on the dry electrical discharge machining. Int J Mater Form 1:1107–1110

    Article  Google Scholar 

  26. Abbas NM (2007) A review on current recent trends in electrical discharge machining. Int J Mach Tools Manuf 47:1214–1228

    Article  Google Scholar 

  27. L Liqing, S Yingjie (2013) Study of dry EDM with oxygen-mixed and cryogenic cooling approaches. The Seventeenth CIRP Conference on Electro Physical and Chemical Machining (ISEM) Procedia CIRP, vol 6, pp 344–350

  28. Kao CC, Tao J, Shih AJ (2007) Near dry electrical discharge machining. Int J Mach Tools Manuf 47:22732281

    Article  Google Scholar 

  29. Gholipoor A, Baseri H, Shabgard MR (2015) Investigation of near dry EDM compared with wet and dry EDM processes. J Mech Sci Tech 5:2213–2218

    Article  Google Scholar 

  30. Zhang Y, Liu Y, Shen Y, Ji R, Cai B, Li H, Wang F (2012) A review of the current understanding and technology of powder mixed electrical discharge machining (PMEDM). In: Proceedings of IEEE International Conference on Mechatronics and Automation, pp 2240–2247

  31. Bai X, Zhang Q-H, Yang T-Y, Zhang J-H (2013) Research on material removal rate of powder mixed near dry electrical discharge machining. Int J Adv Manuf Technol 68:17571766

    Article  Google Scholar 

  32. Kumar H (2015) Development of mirror like surface characteristics using nano powder mixed electric discharge machining (NPMEDM). Int J Adv Manuf Technol 76:105113

    Article  Google Scholar 

  33. Singh S, Yeh MF (2012) Optimization of abrasive powder mixed EDM of aluminum matrix composites with multiple responses using gray relational analysis. JMEPEG 21:481491

    Google Scholar 

  34. Fukui M, Kinoshita N (1989) Developing a ’mole’ electric discharge digging machining. Ann ClRP 6:203–206

    Article  Google Scholar 

  35. Guirguis KS (1993) Electrical-discharge machining of curved passages. Rockwell International Corporation, NASA Marshall Space Flight Center; Huntsville, AL, United States, NASA Tech Briefs (ISSN 0145-319X), p 129

  36. Bayramoglu M, Duffill AW (1995) Manufacturing linear and circular contours using CNC EDM and frame type tools. Int J Mach Tools Manuf 35(8):1125–1136

    Article  Google Scholar 

  37. Ishida T, Takeuchi Y (1999) Curved hole machining by self-movable mechanism with electrical discharge machining function development of automatic discharge gap controller. J Jpn Soc Precis Eng 65(2):245–249

    Article  Google Scholar 

  38. Ishida T, Takeuchi Y (2002) L-Shaped curved hole creation by means of electrical discharge machining and an electrode curved motion generator. Int J Adv Manuf Technol 19:260–265

    Article  Google Scholar 

  39. Ishida T, Takeuchi Y (2002) Development of electrode feed mechanism for electrical discharge curved hole machining using slider crank chains. J Jpn Soc Precis Eng 68(2):206–210

    Article  Google Scholar 

  40. Miyake Y, Ishida T, Takeuchi Y (2005) Electrical discharge machining of constant curvature curved hole by means of electrode motion control device. J Jpn Soc Precis Eng Contrib Pap 71(11):1388–1392

    Article  Google Scholar 

  41. Uchiyama M, Shibazaki T (2004) Development of an electromachining method for machining curved holes. J Mater Process Technol 149:453–459

    Article  Google Scholar 

  42. Ishida T, Kogure S, Miyake Y, Takeuchi Y (2004) Creation of long curved hole by means of electrical discharge machining using an in-pipe movable mechanism. J Mater Process Technol 149:157–164

    Article  Google Scholar 

  43. Ishida T, Kogure S, Miyake Y, Takeuchi Y (2007) Extension of curved hole length by means of electrical discharge machining using an in-pipe movable device. J Jpn Soc Precis Eng Contrib Pap 71(7):911–915

    Article  Google Scholar 

  44. Ishida T, Nakajima Y, Miyake Y, Takeuchi Y (2005) Development of electrode motion control device for electrical discharge curved hole machining. J Jpn Soc Precis Eng Contrib Pap 71(2):262–266

    Article  Google Scholar 

  45. Nakajima, Ishida T, Kita M, Teramoto K, Takeuchi Y (2006) Development of curved hole machining method-size reduction of hole diameter. Mechatronics for safety, security and dependability in a new era, Elsevier, USA, Japan, China and Europe, pp 154–162

  46. Mot M, Purcar C (2009) Development of curved hole machining method. Nonconv Technol Rev 4:77–80

    Google Scholar 

  47. Uliuliuc D, Goncalves AM, Coelho LS (2010) Electrical discharge machining of the curvilinear axis holes. Nonconv Technol Rev 2:44–47

    Google Scholar 

  48. Kita M, Ishida T, Teramoto K, Takeuchi Y (2010) Size reduction and performance improvement of automatic discharge gap controller for curved hole electrical discharge machining. Service robotics and mechatronics. Springer, London, pp 143–148

    Google Scholar 

  49. Ishida T, Takeuchi Y (2010) Design and implementation of automatic discharge gap controller for a curved hole creating microrobot with an electrical discharge machining function. Int J Autom Technol 4(6):542–551

    Article  Google Scholar 

  50. Slatineanu L, Goncalves-Coelho A, Coteata M, Uliuliuc D, Grigora(Beliu) I, Mazuru S (2011) Teaching students the basics of designing experimental research equipment. In: Proceedings of ICAD2011, The Sixth International Conference on Axiomatic Design, Daejeon, pp 195–203

  51. Ishida T, Nagasawa H, Kita M, Takeuchi Y (2008) Creation of cross-section changing hole with a hemisphere by means of electrical discharge machining. In: The 41st CIRP conference on manufacturing systems. pp 365–368

  52. Ishida T, Mochizuki Y, Takeuchi Y (2009) Elementary study on the creation of cross section’s changing hole by means of electrical discharge machining. Int J Autom Technol 2(5):592–601

    Article  Google Scholar 

  53. Ishida T, Okahara Y, Kita M, Mizobuchi A, Nakamoto K, Takeuchi Y (2014) Fundamental study on hole fabrication inside a hole by means of electrical discharge machining. Int J Autom Technol 8(5):773–782

    Article  Google Scholar 

  54. Ishiguro E, Ishida T, Kita M, Nakamoto K, Takeuchi Y (2013) Development of CAD/CAM system for cross sections changing hole electrical discharge machining-formulation of post processor. J Adv Mech Des Syst Manuf 7(4):763–776

    Article  Google Scholar 

  55. Misumi (2010) Surface finishing, metal etching. http://misumi-techcentral.com/tt/en/surface/2010/03/037-electrolytic-etching---electrolytic-etching-applications---1. Acessed date 23 Dec 2015

  56. Karunakaran S (2010) Production technology. Tata McGraw Hill, New Delhi

    Google Scholar 

  57. Wang CC, Yan BH (2000) Blind-hole drilling of Al2O/6061Al composite using rotary electro-discharge machining. J Mater Process Technol 102:90–102

    Article  Google Scholar 

  58. Ziada Y, Koshy P (2007) Rotating curvilinear tools for EDM of polygonal shapes with sharp corners. Ann CIRP 56(1):221–224

    Article  Google Scholar 

  59. Bamberg E, Heamawatanachai S (2009) Orbital electrode actuation to improve efficiency of drilling micro-holes by micro-EDM. J Mater Process Technol 209:1826–1834

    Article  Google Scholar 

  60. Moles M, Zhang J (2008) Curved arrays for improved horizontal sizing in small pipe welds. ASNT Res Symp Spring Conf, Br Inst Non-Destr Test 50(5):253–257

    Google Scholar 

  61. Tang X, Nakamoto K, Obata K, Takeuchi Y (2013) Ultraprecision micromachining of curved groove and curved surface by the use of cutting point swivel machining. J Jpn Soc Precis Eng 79(2):165–169

    Article  Google Scholar 

  62. Fallboshmer P, Altan T, Tnshoff HK, Nakagawa T (1996) Survey of the die and mold manufacturing industry—practices in Germany, Japan, and the United States. J Mater Process Technol 59(1–2):158–168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Meshram.

Additional information

Technical Editor: Márcio Bacci da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshram, D.B., Puri, Y.M. Review of research work in die sinking EDM for machining curved hole. J Braz. Soc. Mech. Sci. Eng. 39, 2593–2605 (2017). https://doi.org/10.1007/s40430-016-0622-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-016-0622-7

Keywords

Navigation