Flow control for the vertical axis wind turbine by means of flapping flexible foils


An active flow control mechanism is proposed to improve the efficiency of the energy extraction for the vertical axis wind turbine. The proposed system consists of a vertical axis wind turbine with flexible blades. The conception is inspired from the vortex control mechanism utilized by the aero-/aqua animals to improve their performance via the flexion of their fins. The viscous non-stationary flow around the turbine is simulated using the ANSYS-FLUENT 15 software. The complex flapping motion is reproduced using a dynamic mesh technique and a user-defined function. The results show that, with this strategy of control, the turbine generates a higher moment coefficient due to the increase in the peaks of lift force caused by a better difference in the pressure between the two sides of the blade due to the flexure motion. The turbine power coefficient can reach 38 % enhancement for the optimal flow control conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19


A :

Rotor swept area

a 0 :

Oscillating amplitude (m)

C :

Blade chord (m)

C L :

Lift coefficient

\(C_{\text{D}}\) :

Drag coefficient

\(C_{\text{m}}\) :

Moment coefficient

\({\text{CP}}\) :

Power coefficient

\(C_{\text{p}}\) :

Pressure coefficient

\(D\) :

Turbine diameter (m)

\(f\) :

Oscillating frequency (Hz)

\(h(x)\) :

Instantaneous airfoil position along the x axis

\(h(y)\) :

Instantaneous airfoil position along the y axis

t :

Instant time (s)

T :

Turbine revolution

\(L\) :

Lift force (N)

\(M\) :

Moment (N m)

\(P\) :

Power (W)

\(R\) :

Turbine radius (m)

\(U\) :

Incoming flow velocity (m/s)


Leading edge vortex

\({\text{zi}}\) :

Flapping frequency controlled parameter relative to turbine radius

η :


μ :

Dynamic viscosity

ρ :


λ :

Tip speed ratio

θ :

Turbine azimuthal angle (°)


  1. 1.

    Bandyopadhyay PR (2004) Biology-inspired science and technology for autonomous underwater vehicles. IEEE J Ocean Eng 29:542–546

    Article  Google Scholar 

  2. 2.

    Lin CS, Hwu C, Young WB (2006) The thrust and lift of an ornithopter’s membrane wings with simple flapping motion. Aerosp Sci Technol 10:111–119

    Article  Google Scholar 

  3. 3.

    Yu J, Liu L, Tan M (2008) Three-dimensional dynamic modeling of robotic fish: simulations and experiments. Transactions of the Institute of Measurement and Control 30(3/4):239–2580

    Google Scholar 

  4. 4.

    Mazaheri K, Ebrahimi A (2010) Experimental investigation of the effect of chord wise flexibility on the aerodynamics of flapping wings in hovering flight. J Fluids Struct 26(4):544–558

    Article  Google Scholar 

  5. 5.

    Gopalkrishnan R, Triantafylloui MS, Triantafylloui GS, Barrett D (1994) Active vorticity control in a shear flow using a flapping foil. J Fluid Mech 274:1–21

    Article  Google Scholar 

  6. 6.

    Jones, KD, Platzer MF (2006) Bio inspired design of flapping wing micro air vehicles an engineer’s perspective. 44th AIAA Aerospace Sciences Meeting and Exhibit AIAA 2006-37

  7. 7.

    Lai JCS, Yue J, Platzer MF (1997) Control of backward facing step flow using a flapping airfoil. ASME1997 FEDSM97-3307

  8. 8.

    Xiao Q, Sun K, Liu H, Hu J (2011) Computational study on near wake interaction between undulation body and a D-section cylinder. Ocean Eng 38:673–683

    Article  Google Scholar 

  9. 9.

    Xiao Q, Liu W, Incecik A (2013) Flow control for VATT by fixed and oscillating flap. Renew Energy 51(141e):152

    Google Scholar 

  10. 10.

    Mazellier N, Feuvrier A, Kourta A (2012) Biomimetic bluff body drag reduction by self-adaptive porous flaps C. Comptes Rendus Mec 340(81):94

    Google Scholar 

  11. 11.

    Bouzaher MT, Hadid M (2015) Active control of the vertical axis wind turbine by the association of flapping wings to their blades. Proc Comput Sci 52:714–722

    Article  Google Scholar 

  12. 12.

    Zhu Q (2007) Numerical simulation of a flapping foil with chordwise or spanwise flexibility. AIAA J 45:2448–2457

    Article  Google Scholar 

  13. 13.

    Nakata T, Liu H (2012) Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Proc R Soc Lond B Biol Sci 279:722–731

    Article  Google Scholar 

  14. 14.

    Liu W, Xiao Q, Cheng F (2013) A bio-inspired study on tidal energy extraction with flexible flapping wings. Bioinspir Biomim. doi:10.1088/1748-3182/8/3/036011

    Google Scholar 

  15. 15.

    Shoele K, Zhu Q (2012) Leading edge strengthening and the propulsion performance of flexible ray fins. J Fluid Mech 693:402–432

    Article  MATH  Google Scholar 

  16. 16.

    Tian F-B, Young J, Lai JCS (2014) Improving power-extraction efficiency of a flapping plate: from passive deformation to active control. J Fluids Struct 51:384–392

    Article  Google Scholar 

  17. 17.

    Miao JM, Ho MH (2006) Effect of flexure on aerodynamic propulsive efficiency of flapping flexible airfoil. J Fluids Struct 22:401–419

    Article  Google Scholar 

  18. 18.

    Jie W, Chen L, Shu-Chao Y, Ning Z (2015) Influence of a flexible tail on the performance of a foil hovering near the ground: numerical investigation. Eur J Mech B/Fluids 52(2015):85–96

    Google Scholar 

  19. 19.

    Liu W, Xiao Q (2015) Investigation on Darrieus type straight blade vertical axis wind turbine with flexible blade. Ocean Eng 110(2015):339–356

    Article  Google Scholar 

  20. 20.

    Shih T, LiouWW Shabbir A, Yang Z, Zhu J (1995) A new kε eddy viscosity model for high Reynolds number turbulent flows. Comput Fluids 24(3):227–238

    Article  Google Scholar 

  21. 21.

    Campanile LF (2007) Modal synthesis of flexible mechanisms for airfoil shape control. J Int Mater Syst Struct. doi:10.1177/1045389X07080638

    Google Scholar 

  22. 22.

    Maître T, Amet E, Pellone C (2013) Modeling of the flow in a Darrieus water turbine: wall grid refinement analysis and comparison with experiments. Renew Energy 51:497–512

    Article  Google Scholar 

  23. 23.

    Nabavi Y (2008) Numerical study of the duct shape effect on the performance of a ducted vertical axis tidal turbine. PhD thesis, University of British Columbia, Vancouver, Canada

  24. 24.

    Amet E, Maître T, Pellone C, Achard JL (2009) 2D numerical simulations of blade–vortex interaction in a Darrieus turbine. J Fluids Eng. doi:10.1115/1.4000258

    Google Scholar 

  25. 25.

    Castelli MR, Englaro A, Benini E (2011) The Darrieus tidal turbine: proposal for a new performance prediction model based on CFD. Energy 36(6):4919–4934

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mohamed Taher Bouzaher.

Additional information

Technical Editor: Jose A. dos Reis Parise.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bouzaher, M.T., Hadid, M. & Semch-Eddine, D. Flow control for the vertical axis wind turbine by means of flapping flexible foils. J Braz. Soc. Mech. Sci. Eng. 39, 457–470 (2017). https://doi.org/10.1007/s40430-016-0618-3

Download citation


  • Control mechanism
  • Vertical axis wind turbine
  • Stall
  • Flexible foils
  • Energy harnessing
  • Efficiency