Skip to main content
Log in

A real-time stereo vision system for distance measurement and underwater image restoration

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper presents the development of an embedded real-time system that performs distance measurement and restoration of underwater images, using stereo vision techniques. To achieve a high performance low-cost implementation, the overall system has been developed using a hardware/software codesign approach. Several hardware modules have been designed to implement the several pixel intensive tasks, such as background image storage, background subtraction, center of mass calculation, and image restoration. On the other hand, less intensive tasks, such as the estimation of the disparity and the distance tasks (performed just once for each image), are executed using an embedded soft processor (Altera Nios II). The developed platform employs a pair of identical CMOS cameras for the stereo vision system, a low-cost FPGA, and an small screen for visualization of the images. In this paper, we describe both the overall design of the system and the calibration procedure used to determine the stereo vision system parameters. The Altera Quartus II was used as a synthesis tool, which estimates that the system consumes 115.25 mW and achieves an output of 26.56 frames per second for images of \(800\times 480\) pixels. The synthesis results and the measurement precision show that the developed system is suitable for real-time tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ishibashi S (2009) The stereo vision system for an underwater vehicle. In: OCEANS 2009—EUROPE, pp 1–6. doi:10.1109/OCEANSE.2009.5278314

  2. Satish Kumar N, Kumar R (2011) Design & development of autonomous system to build 3D model for underwater objects using stereo vision technique. In: Annual IEEE India Conference (INDICON), pp. 1–4. doi:10.1109/INDCON.2011.6139621

  3. Zheng B, Zheng H, Zhao L, Gu Y, Sun L, Sun Y (2012) Underwater 3D target positioning by Inhomogeneous Illumination based on binocular stereo vision. In: OCEANS, Yeosu 2012, pp 1–4. doi:10.1109/OCEANS-Yeosu.6263373

  4. Wu Y, Nian R, He B (2013) 3D reconstruction model of underwater environment in stereo vision system. In: Oceans—San Diego 2013, pp 1–4

  5. Trucco E, Verri A (1998) Introductory techniques for 3-D computer vision. Prentice Hall PTR, Upper Saddle River

    Google Scholar 

  6. Perri S, Colonna D, Zicari P, Corsonello P (2006) Sad-based stereo matching circuit for FPGAs. In: 13th IEEE international conference on electronics, circuits and systems ICECS ’06. pp 846–849. doi:10.1109/ICECS.2006.379921

  7. Raimondo Schettini SC (2010) Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP J Adv Signal Process, p 14. doi:10.1155/2010/746052

  8. Trucco E (2006) Self-tuning underwater image restoration. IEEE J Ocean Eng, pp 511–519. doi:10.1109/JOE.2004.836395

  9. McGlamery BL (1979) A computer model for underwater camera systems. SPIE Ocean Opt 208:221–231. doi:10.1117/12.958279

  10. Jaffe JS (1990) Computer modeling and the design of optimal underwater imaging systems. IEEE J Ocean Eng, pp 101–111. doi:10.1109/48.50695

  11. Lazaros N, Sirakoulis GC, Gasteratos A (2008) Review of stereo vision algorithms: from software to hardware. Int J Optomechatron 2(4):435–462. doi:10.1080/15599610802438680

    Article  Google Scholar 

  12. Seunghun J, Cho J, Xuan DP et al (2010) FPGA design and implementation of a real-time stereo vision system. IEEE Trans Circ Syst Video Technol 20:12. doi:10.1109/TCSVT.2009.2026831

  13. Kalomiros J, Lygouras J (2010) Robotic mapping and localization with real-time dense stereo on reconfigurable hardware. Int J Reconfigurable Comput, vol 2010. doi:10.1155/2010/480208

  14. Kalomiros J, Lygouras J (2009) Comparative study of local sad and dynamic programming for stereo processing using dedicated hardware. EURASIP J Adv Signal Process. doi:10.1155/2009/914186

  15. Georgoulas I, Andreadis I (2008) Real-time stereo vision techniques. In: Proceedings of the 16th IFIP/IEEE international conference on very large scale integration (VLSI-SoC 2008)

  16. Kalomiros J, Lygouras J (2008) Hardware implementation of a stereo co-processor in a medium-scale field programmable gate array. Comput Dig Tech IET 2(5):336–346. doi:10.1049/iet-cdt:20070147

    Article  Google Scholar 

  17. Ambrosch K, Kubinger W, Humenberger M, Steininger A (2008) Flexible hardware-based stereo matching. EURASIP J Embed Syst 2(1–2):12. doi:10.1155/2008/386059

    Google Scholar 

  18. Gardel A, Montejo P, Garca J, Bravo I, Lzaro JL (2012) Parametric dense stereovision implementation on a system-on chip (soc). Sensors 12(2):1863–1884. doi:10.3390/s120201863

    Article  Google Scholar 

  19. Sánchez-Ferreira C, Mori J, Llanos C (2012) Background subtraction algorithm for moving object detection in FPGA. In: VIII southern conference on programmable logic (SPL), pp 1–6. doi:10.1109/SPL.2012.6211792

  20. Murphy C, Lindquist D, Rynning A, Cecil T, Leavitt S, Chang M (2007) Low-cost stereo vision on an FPGA. In: 15th annual IEEE symposium on field-programmable custom computing machines FCCM. pp 333–334. doi:10.1109/FCCM.2007.44

  21. Hadjitheophanous S, Ttofis C, Georghiades A, Theocharides T (2010) Towards hardware stereoscopic 3d reconstruction a real-time FPGA computation of the disparity map. In: Design, automation test in Europe conference exhibition (DATE), pp 1743–1748. doi:10.1109/DATE.2010.5457096

  22. Banz C, Hesselbarth S, Flatt H, Blume H, Pirsch P (2010) Real-time stereo vision system using semi-global matching disparity estimation: architecture and FPGA implementation. In: International conference on embedded computer systems (SAMOS), pp 93–101. doi:10.1109/ICSAMOS.2010.5642077

  23. Botella G, Rodríguez M, García A, Ros E (2008) Neuromorphic configurable architecture for robust motion estimation. Int J Reconfigurable Comput, vol 2008. doi:10.1155/2008/428265

  24. Jia Y, Li M, An L, Zhang X (2003) Autonomous navigation of a miniature mobile robot using real-time trinocular stereo machine. In: Proceedings of the 2003 IEEE international conference on robotics, intelligent systems and signal processing. pp 417–421. doi:10.1109/RISSP.2003.1285610

  25. Villalpando CY, Morfopolous A, Matthies L (2011) FPGA implementation of stereo disparity with high throughput for mobility applications. In: IEEE aerospace conference. pp 1–10. doi:10.1109/AERO.2011.5747269

  26. Iwata H, Saneyoshi K (2012) Forward obstacle detection system by stereo vision. In: Proceedings of the IEEE international conference on robotics and biomimetics, pp 1842–1847. doi:10.1109/ROBIO.2012.6491236

  27. Bonin GF, Burguera A (2011) Imaging systems for advanced underwater vehicles. J Marit Res VIII:65–86

  28. Schechner NY (2004) Clear underwater vision. Proc Comput Vis Pattern Recognit. doi:10.1109/CVPR.2004.1315078

  29. Yoshida H (2009) Fundamentals of underwater vehicle hardware and their applications. InTech 29:557–582. doi:10.5772/6721

    Google Scholar 

  30. Memik SO, Katsaggelos AK, Sarrafzadeh M (2003) Analysis and FPGA implementation of image restoration under resource constraints. IEEE Trans Comput 52:390–399. doi:10.1109/TC.2003.1183952

    Article  Google Scholar 

  31. Ngo HT, Zhang MZ, Tao L, Asari VK (2006) Design of a digital architecture for real-time video, enhancement based on illuminance-reflectance model. In: 49th IEEE International midwest symposium on circuits and systems, MWSCAS ’06, pp 286–290. doi:10.1109/MWSCAS.2006.382053

  32. Mori J, Sánchez-Ferreira C, Llanos C (2012) Real-time image processing based on neighborhood operations Using. In: Proceedings of the XVIII International IBERCHIP Workshop, pp 97–102

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos H. Llanos.

Additional information

Technical Editor: Sadek C. Absi Alfaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Ferreira, C., Mori, J.Y., Farias, M.C.Q. et al. A real-time stereo vision system for distance measurement and underwater image restoration. J Braz. Soc. Mech. Sci. Eng. 38, 2039–2049 (2016). https://doi.org/10.1007/s40430-016-0596-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-016-0596-5

Keywords

Navigation