Abstract
In this study, an analytical approach based on the Rayleigh method is adopted to calculate the first resonant frequency of a 60.80 m-high mobile phone mast system, by considering the geometric stiffness, functions of the concentrated forces, and self-weight of the structure. Such a technique is applicable to continuous systems with infinite degrees of freedom. However, it is important to bear in mind that actual structures are more complex than simple systems, such as beams and columns, because the properties of actual structures vary with their length. For comparison, a finite element method (FEM)-based computer simulation is performed. First, the axial forces on each segment of the structure are compared. Then, under geometric nonlinearity, the vibration frequency of the fundamental mode is calculated analytically. Finally, the structural stiffness is evaluated. The results of the analytical approach are found to differ slightly from those of the FEM-based model.
This is a preview of subscription content, access via your institution.



Abbreviations
- D :
-
External diameter, cm
- E :
-
Elastic modulus of the material, N/m2
- e :
-
Axial displacement
- d :
-
Elementary, infinitesimal, internal diameter (cm)
- F :
-
Force, N
- f :
-
Frequency, Hz
- g :
-
Gravitational acceleration, m/s2
- I :
-
Moment of the section, m4
- K :
-
Stiffness, N/m
- L :
-
Length, cm
- M :
-
Total mass generalized total mass (kg)
- N :
-
Normal force, N
- m :
-
Mass, kg
- \(\bar{m}\) :
-
Distributed mass, kg/m
- q :
-
Coordinate
- t :
-
Time
- u :
-
Axial displacement
- v :
-
Transversal displacement
- x :
-
Independent variable
- δ :
-
Virtual work (J)
- ϕ :
-
Function
- ω :
-
Frequency (rd/s)
- π :
-
3.141592653590…
- ρ :
-
Density (kg/m3)
- 0 :
-
Relative to elastic, lumped
- i, I :
-
Relative to internal
- g :
-
Relative to geometric
- t :
-
Relative to time
- 1,2,3 :
-
Denote the first, second, and third respectively
- ´:
-
Relative to spatial derivate
- .:
-
Relative to derivate in relation to time
References
Warminska A, Manoach E, Warminski J (2014) Nonlinear dynamics of a reduced multimodal Timoshenko beam subjected to thermal and mechanical loadings. Meccanica 49:1775–1793. doi:10.1007/s11012-014-9891-3
Norouzi H, Younesian D (2015) Chaotic vibrations of beams on nonlinear elastic foundations subjected to reciprocating loads. Mech Res Commun 69:121–128. doi:10.1016/j.mechrescom.2015.07.001
Awrejcewicz J, Krysko AV, Zagniboroda NA, Dobriyan VV, Krysko VA (2015) On the general theory of chaotic dynamics of flexible curvilinear Euler-Bernoulli beams. Nonlinear Dynam 79:11–29. doi:10.1007/s11071-014-1641-5
Strutt JW, Lindsay RB (1945) The theory of sound, 2nd edn. Dover Publications, New York
Mazzilli CEN (1979) Sobre a instabilidade de estruturas elásticas sensíveis à imperfeições (About the instability of elastic structures case sensitive to imperfections). Monograph (Master Degree), Polytechnic School of University of São Paulo, São Paulo
El-Sawy KM, Sweedan AMI, Martini MI (2009) Major-axis elastic buckling of axially loaded castellated steel columns. Thin Wall Struct 47:1295–1304. doi:10.1016/j.tws.2009.03.012
Timoshenko SP, Gere JM (1961) Theory of elastic stability, 2nd edn. McGraw-Hill Book Company, New York
Wei DJ, Yan SX, Zhang ZP, Li X-F (2010) Critical load for buckling of non-prismatic columns under self-weight and tip force. Mech Res Commun 37:554–558. doi:10.1016/j.mechrescom.2010.07.024
Jurjo DLBR, Magluta C, Roitman N, Gonçalves PB (2010) Experimental methodology for the dynamic analysis of slender structures based on digital image processing techniques. Mech Syst Signal Pr 24(5):1369–1382. doi:10.1016/j.ymssp.2009.12.006
Wahrhaftig AM, Brasil RMLRF, Balthazar JM (2013) The first frequency of cantilever bars with geometric effect: a mathematical and experimental evaluation. J Braz Soc Mech Sci Eng 35:457–467. doi:10.1007/s40430-013-0043-9
Leissa AW (2005) The historical bases of the Rayleigh and Ritz methods. J Sound Vib 287:961–978. doi:10.1016/j.jsv.2004.12.021
Rayleigh (1877) Theory of sound; Volumes I and II. Dover Publications, New York (re-issued)
Amabili M, Garziera R (1999) A technique for the systematic choice of admissible functions in the Rayleigh-Ritz method. J Sound Vib 224(3):519–539. doi:10.1006/jsvi.1999.2198
Courant R (1943) Variational methods for the solution of problems of equilibrium and vibrations. B Am Math Soc 49:1–23. doi:10.1090/S0002-9904-1943-07818-4
Kao R (1975) Application of Hill functions to two-dimensional plate problems. Int J Solids Struct 11:21–31. doi:10.1016/0020-7683(75)90100-6
Mizusawa T, Kajita T, Naruoka M (1979) Vibration of skew plate by using B-spline functions. J Sound Vib 62(2):301–308. doi:10.1016/0022-460X(79)90029-4
Yuan J, Dickinson SM (1992) On the use of artificial springs in the study of the free vibrations of systems comprised of straight and curved beams. J Sound Vib 153(2):203–216. doi:10.1016/S0022-460X(05)80002-1
Cheng L, Nicolas J (1992) Free vibration analysis of a cylindrical shell-circular plate system with general coupling and various boundary conditions. J Sound Vib l55(2):231–247. doi:10.1016/0022-460X(92)90509-V
Ghayesh MH, Balar S (2008) Non-linear parametric vibration and stability of axially moving visco-elastic Rayleigh beams. Int J Solids Struct 45(25):6451–6467. doi:10.1016/j.ijsolstr.2008.08.002
Clough RW, Penzien J (1993) Dynamic of structures, 2nd edn. McGraw Hill International Editions, Taiwan
Temple G, Bickley WG (1933) Rayleigh’s principle and its applications to engineering. Oxford University Press, Humphrey Milford, London
Kumar S, Mitra A, Roy H (2015) Geometrically nonlinear free vibration analysis of axially functionally graded taper beams. Int J Eng Sci Tech (JESTECH) 18:579–593. doi:10.1016/j.jestch.2015.04.003
Filho FV (1975) Matrix analysis of structures (Static Stability, Dynamics). Technological Institute of Aeronautics, Almeida Neves (Ed.), Rio de Janeiro
Shiki SB, Lopes V Jr, da Silva S (2014) Identification of nonlinear structures using discrete-time Volterra series. J Braz Soc Mech Sci Eng 36(3):523–532. doi:10.1007/s40430-013-0088-9
Roselat PA, Ludwiczakz DR (1996) Geometric stiffness effects on data recovery of an idealized mast/blanket model. Comput Struct 59(1):67–79. doi:10.1016/0045-7949(96)00236-2
Cheng G, Yu N, Olhoff N (2015) Optimum design of thermally loaded beam-columns for maximum vibration frequency or buckling temperature. Int J Solids Struct 66:20–34. doi:10.1016/j.ijsolstr.2015.04.008
Náprstek J, Fischer C (2015) Static and dynamic analysis of beam assemblies using a differential system on an oriented graph. Comput Struct 155:28–41. doi:10.1016/j.compstruc.2015.02.021
Armand SC (1993) Influence of mass moment of inertia on the modes of a preloaded solar array mast. Finite Elem Anal Des 14:313–324. doi:10.1016/0168-874X(93)90029-P
Chang JT (2004) Derivation of the higher-order stiffness matrix of a space frame element. Finite Elem Anal Des 41:15–30. doi:10.1016/j.finel.2004.03.003
Wadee MA, Farsi M (2015) Imperfection sensitivity and geometric effects in stiffened plates susceptible to cellular buckling. Structures 3:172–186. doi:10.1016/j.istruc.2015.04.004
Qi L, Ding Y (2016) Refined spatial beam-column element for second-order analysis of lattice shell structure. Structures. doi:10.1016/j.istruc.2016.02.001 (in press)
Wilson EL, Bathe KJ (1976) Numerical methods in finite element analysis. Prentice-Hall Inc, Englewood Cliffs
Lin Y-H, Trethewey MW (1990) Finite element analysis of elastic beams subjected to moving dynamic loads. J Sound Vib 136(2):323–342. doi:10.1016/0022-460X(90)90860-3
Zonaa A, Ragni L, Dall’Astaa A (2008) Finite element formulation for geometric and material nonlinear analysis of beams prestressed with external slipping tendons. Finite Elem Anal Des 44:910–919. doi:10.1016/j.finel.2008.06.005
Almeida CA, Albino JCR, Menezes IFM, Paulino GH (2011) Geometric nonlinear analyses of functionally graded beams using a tailored Lagrangian formulation. Mech Res Commun 38:553–559. doi:10.1016/j.mechrescom.2011.07.006
Polat C, Calayir Y (2010) Nonlinear static and dynamic analysis of shells of revolution. Mech Res Commun 37:205–209. doi:10.1016/j.mechrescom.2009.12.009
Shooshtari A, Razavi S (2015) Large amplitude free vibration of symmetrically laminated magneto-electro-elastic rectangular plates on Pasternak type foundation. Mech Res Commun 69:103–113. doi:10.1016/j.mechrescom.2015.06.011
de Oliveira FM, Greco M (2015) Nonlinear dynamic analysis of beams with layered cross sections under moving masses. J Braz Soc Mech Sci Eng 37:451–462. doi:10.1007/s40430-014-0184-5
Cook RD (1974) Concepts and applications of finite element analysis. Wiley, Hoboken
Bucalem ML, Bathe KJ (2011) The mechanics of solids and structures—hierarchical modeling and the finite element solution. Springer, Berlin
SAP 2000 (2015) Integrated software for structural analysis and design, analysis reference manual. Computer and Structures, Inc., Berkeley
Author information
Authors and Affiliations
Corresponding author
Additional information
Technical Editor: Kátia Lucchesi Cavalca Dedini.
Rights and permissions
About this article
Cite this article
M. Wahrhaftig, A.d., Brasil, R.M.L.R.F. Initial undamped resonant frequency of slender structures considering nonlinear geometric effects: the case of a 60.8 m-high mobile phone mast. J Braz. Soc. Mech. Sci. Eng. 39, 725–735 (2017). https://doi.org/10.1007/s40430-016-0547-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40430-016-0547-1