Robustified GPC controller based on H robust control for an hydraulic actuator


This paper proposes the robustification method of primary generalized predictive control GPC for a hydraulic actuator, which is previously modeled by an uncertain plant. Three-step procedures should be followed for robustification: First, the primary GPC controller based on nominal plant is designed to ensure a better tracking dynamic of the closed-loop system. Second, the Q-parameter transfer function is determined from solving the weighted-mixed sensitivity problem using the two Riccati equations where the uncertainty plant and neglected dynamics are taken into account. Finally, the Youla parameterization combines the primary GPC controller and Q-parameter to design the robustified GPC controller which enhances the trade-off robustness of primary GPC controller without changing its better tracking dynamic. To validate the effectiveness of the proposed robustification, the hydraulic actuator, which presents a realistic process, is controlled by both primary and robustified GPC controllers where their simulation results are compared in time and frequency domains by those given by the H controller.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Camacho EF, Bordons C (2007) Model predictive control. Springer, London, pp 81–126

    Google Scholar 

  2. 2.

    Camacho EF, Berenguel M, Rubio FR (1997) Advanced control of solar plants. Springer, London, pp 81–151

    Google Scholar 

  3. 3.

    Morari M, Lee JH (1999) Model predictive control: past, present and future. Comput Chem Eng 23:667–682

    Article  Google Scholar 

  4. 4.

    Durmu B, Temurta H, Yumuak N, Temurta F (2009) A study on industrial robotic manipulator model using model based predictive controls. J Intell Manuf 20:233–241

    Article  Google Scholar 

  5. 5.

    Zhenkai Guo, Xinping Guan (2015) Nonlinear generalized predictive control based on online least squares support vector machines. Nonlinear Dyn 79:1163–1168

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Clarke DW, Mohtadi C, Tuffs PS (1987) Generalized predictive control-part I: the basic algorithm. Automatica 23:137–160

    Article  MATH  Google Scholar 

  7. 7.

    Tan KK, Lee TH, Huang SN, Leu FM (2001) Adaptive-predictive control of a class of SISO nonlinear systems. Dyn Control 11:151–174

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Scattolini R, Schiavoni N (1992) A note on multivariable generalized predictive control. Int J Control 56:253–257

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Susanu M, Dumur D (2006) Validation of predictive axis control structure within a virtual open architecture machine tool. Int J Mach Sci Tech 10:389–415

    Article  Google Scholar 

  10. 10.

    Ansay P, Gevers M, Wertz V (1998) Enhancing the robustness of GPC via a simple choice of the youla parameter. Eur J Control 4:64–70

    Article  MATH  Google Scholar 

  11. 11.

    Kouvaritakis E, Rossiter JA, Chang AOT (1992) Stable generalized predictive control: an algorithm with guaranteed stability. IEE Proc D 139:349–362

    Article  MATH  Google Scholar 

  12. 12.

    Yoon TW, Clarke DW (1995) Observer design in receding horizon predictive control. Int J Control 61:171–191

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Gossner R, Kouvaritakis B, Rossiter JA (1997) Stable generalized predictive control with constraints and bounded disturbances. Automatica 33:551–568

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Olaru S, Rodriguez PA (2006) Robustification of explicit predictive control laws. In: Proceedings of the 45th IEEE conference on decision and control, pp 13–15

  15. 15.

    Stoica C, Rodriguez PA, Dumur D (2008) MIMOptMPC: a matlabTM toolbox for off-robustification of multivariable MPC. In: IEEE international symposium on computer-aided control system design, Texas, USA, 3–5 Sept 2008

  16. 16.

    Massimetti M, Zaccarian L, Hu T, Teel AR (2009) Linear discrete time global and regional anti-windup. Int J Control 82:2179–2192

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Khelifa KO, Bali N, Nezli L (2014) Off-line robustification of generalized predictive control for uncertain systems. Arch Control Sci 24:499–513

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Youla D, Jabr H, Bongiorno J (1976) Modern wiener-hopf design of optimal controllers. IEEE Trans Autom Control 21:319–338

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Sarath SN (2011) Automatic weight selection algorithm for designing H infinity controller for active magnetic bearing. Int J Eng Sci Tech 3(1):122–138

    Google Scholar 

  20. 20.

    Sedraoui M, Gherbi S, Abdelmalek S (2012) A robust controller based on fractional structure for MIMO plant with multiple delays. Control Intell Syst 40:83–94

    MathSciNet  Google Scholar 

  21. 21.

    Chiang RY, Safonov MG (1988) Robust-control toolbox user’s guide. The Math Works Inc, Natick

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Moussa Sedraoui.

Additional information

Technical Editor: Marcelo A. Trindade.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aidoud, M., Sedraoui, M., Lachouri, A. et al. Robustified GPC controller based on H robust control for an hydraulic actuator. J Braz. Soc. Mech. Sci. Eng. 38, 2181–2188 (2016).

Download citation


  • H control
  • Hydraulic actuators
  • Predictive control
  • Robust control
  • Two-term control