Skip to main content
Log in

Free vibration analysis of sigmoid functionally graded nanobeams based on a modified couple stress theory with general shear deformation theory

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Free vibration of nano-scale beams made of sigmoid functionally graded material is studied based on the modified couple stress theory. In the context of the modified couple stress theory, a material length scale parameter is used to describe the size effect. The classical, first-order and some higher order beam theories are considered to assess the effect of shear deformation. Differential equations of motion and boundary conditions are derived using Hamilton’s principle. The equations of motion are discretized by generalized differential quadrature method. Finally, a comprehensive solution for the present problem with general shear deformation theory and with different boundary conditions is provided. Then effects of the shear deformation, boundary conditions, Poisson’s ratio, and material composition are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139–147. doi:10.1088/0957-4484/11/3/301

    Article  Google Scholar 

  2. Xu F, Qin Q, Mishra A, Gu Y, Zhu Y (2010) Mechanical properties of ZnO nanowires under different loading modes. Nano Res 3:271–280. doi:10.1007/s12274-010-1030-4

    Article  Google Scholar 

  3. Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45:288–307. doi:10.1016/j.ijengsci.2007.04.004

    Article  MATH  Google Scholar 

  4. Boumia L, Zidour M, Benzair A, Tounsi A (2014) A Timoshenko beam model for vibration analysis of chiral single-walled carbon nanotubes. Phys E 59:186–191. doi:10.1016/j.physe.2014.01.020

    Article  Google Scholar 

  5. Kong Sh, Zhou Sh, Nie Zh, Wang K (2009) Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int J Eng Sci 47:487–498. doi:10.1016/j.ijengsci.2008.08.008

    Article  MathSciNet  MATH  Google Scholar 

  6. Sahmani S, Bahrami M, Ansari R (2014) Nonlinear free vibration analysis of functionally graded third-order shear deformable microbeams based on the modified strain gradient elasticity theory. Compos Struct 110:219–230. doi:10.1016/j.compstruct.2013.12.004

    Article  Google Scholar 

  7. Ansari R, Hosseini K, Darvizeh A, Daneshian B (2013) A sixth-order compact finite difference method for non-classical vibration analysis of nanobeams including surface stress effects. Appl Math Comput 219:4977–4991. doi:10.1016/j.amc.2012.11.045

    MathSciNet  MATH  Google Scholar 

  8. Hosseini-Hashemi Sh, Nazemnezhad R (2013) An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Compos Part B Eng 52:199–206. doi:10.1016/j.compositesb.2013.04.023

    Article  Google Scholar 

  9. Ansari R, Mohammadi V, Faghih Shojaei M, Gholami R, Sahmani S (2014) Postbuckling analysis of Timoshenko nanobeams including surface stress effect. Int J Eng Sci 75:1–10. http://dx.doi.org/10.1016/j.ijengsci.2013.10.002

  10. Zhang LL, Liu JX, Fang XQ, Nie FQ (2014) Size-dependent dispersion characteristics in piezoelectric nanoplates with surface effects. Phys E 57:169–174. doi:10.1016/j.physe.2013.11.007

    Article  Google Scholar 

  11. Koiter WT (1964) Couple stresses in the theory of elasticity. I & II Proc K Ned Akad Wet (B) 67:17–44

    MathSciNet  MATH  Google Scholar 

  12. Mindlin RD (1964) Microstructure in linear elasticity. Arch Ration Mech Anal 16:51–78

    Article  MathSciNet  MATH  Google Scholar 

  13. Yang F, Chong AM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory of elasticity. Int J Solids Struct 39:2731–2743. doi:10.1016/S0020-7683(02)00152-X

    Article  MATH  Google Scholar 

  14. Ma HM, Gao XL, Reddy JN (2008) A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J Mech Phys Solids 56:3379–3391. doi:10.1016/j.jmps.2008.09.007

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang YG, Lin WH, Liu N (2013) Nonlinear free vibration of a microscale beam based on modified couple stress theory. Phys E 47:80–85. doi:10.1016/j.physe.2012.10.020

    Article  Google Scholar 

  16. Asghari M, Kahrobaiyan MH, Ahmadian MT (2010) A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int J Eng Sci 48:1749–1761. doi:10.1016/j.ijengsci.2010.09.025

    Article  MathSciNet  MATH  Google Scholar 

  17. Jomezadeh E, Noori HR, Saidi AR (2011) The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Phys E 43:877–883. doi:10.1016/j.physe.2010.11.005

    Article  Google Scholar 

  18. Akgoz B, Civalek O (2012) Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory. Mater Des 42:164–171. doi:10.1016/j.matdes.2012.06.002

    Article  Google Scholar 

  19. Roque CMC, Fidalgo DS, Ferreira AJM, Reddy JN (2013) A study of a microstructure-dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method. Compos Struct 96:532–537. doi:10.1016/j.compstruct.2012.09.011

    Article  Google Scholar 

  20. Mohammad Abadi M, Daneshmehr AR (2014) An investigation of modified couple stress theory in buckling analysis of micro composite laminated Euler–Bernoulli and Timoshenko beams. Int J Eng Sci 75:40–53. http://dx.doi.org/10.1016/j.ijengsci.2013.11.009

  21. Mohammad-Abadi M, Daneshmehr AR (2014) Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundary conditions. Int J Eng Sci 74:1–14. doi:10.1016/j.ijengsci.2013.08.010

    Article  MathSciNet  Google Scholar 

  22. Shaat M, Mahmoud FF, Alshorbagy AE, Alieldin SS, Meletis EI (2012) Size-dependent analysis of functionally graded ultra-thin films. Struct Eng Mech 44(4):431–448

    Article  Google Scholar 

  23. Chung YL, Chi SH (2001) The residual stress of functionally graded materials. J Chin Inst Civil Hydraul Eng 13:1–9

    Google Scholar 

  24. Eltaher MA, Emam SA, Mahmoud FF (2012) Free vibration analysis of functionally graded size-dependent nanobeams. Appl Math Comput 218:7406–7420. doi:10.1016/j.amc.2011.12.090

    MathSciNet  MATH  Google Scholar 

  25. Asgharifard P, Haeri Yazdi MR (2013) Nonlinear free vibrations of functionally graded nanobeams with surface effects. Compos Part B Eng 45:81–586. http://dx.doi.org/10.1016/j.compositesb.2012.04.064

  26. Hosseini-Hashemi Sh, Nezamnezhad R, Bedroud M (2014) Surface effects on nonlinear free vibration of functionally graded nanobeams using nonlocal elasticity. Appl Math Model. http://dx.doi.org/10.1016/j.apm.2013.11.068

  27. Jung WY, Han SCh, Park WT (2014) A modified couple stress theory for buckling analysis of S-FGM nanoplates embedded in Pasternak elastic medium. Compos Part B Eng. doi:10.1016/j.compositesb.2013.12.058 Accepted Manuscript

    Google Scholar 

  28. Ke LL, Wang YSh (2011) Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos Struct 93:342–350. doi:10.1016/j.compstruct.2010.09.008

    Article  Google Scholar 

  29. Salamat-talab M, Nateghi A, Torabi J (2012) Static and dynamic analysis of third-order shear deformation FG micro beam based on modified couple stress theory. Int J Mech Sci 57:63–73. doi:10.1016/j.ijmecsci.2012.02.004

    Article  Google Scholar 

  30. Thai HT, Choi DH (2013) Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos Struct 95:142–153

    Article  Google Scholar 

  31. Arbind A, Reddy JN (2013) Nonlinear analysis of functionally graded microstructure-dependent beams. Compos Struct 98:272–281

  32. Shaat M, Mahmoud FF, Alshorbagy AE, Alieldin SS (2013) Bending analysis of ultra-thin functionally graded mindlin plates incorporating surface energy effects. Int J Mech Sci 75:223–232

    Article  MATH  Google Scholar 

  33. Shaat M, Mahmoud FF, Alieldin SS, Alshorbagy AE (2013) Finite element analysis of functionally graded nano-scale films. Finite Elem Anal Des 74:41–52

    Article  MathSciNet  MATH  Google Scholar 

  34. Lü CF, Lim CW, Chen WQ (2009) Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory. Int J Solids Struct 46:1176–1185

    Article  MATH  Google Scholar 

  35. Mindlin RD (1963) Influence of couple-stresses on stress concentrations. Exp Mech 3:1–7

    Article  Google Scholar 

  36. Park SK, Gao XL (2006) Bernoulli–Euler beam model based on a modified couple stress theory. J Micromech Microeng 16:2355–2359. http://dx.doi.org/0.1088/0960-1317/16/11/015

  37. Chong ACM, Yang F, Lam DCC, Tong P (2001) Torsion and bending of micron-scaled structures. J Mater Res 16:1052–1058. doi:10.1557/JMR.2001.0146

    Article  Google Scholar 

  38. Emam SA (2001) Analysis of shear-deformable composite beams in postbuckling. Compos Struct 94:24–30. doi:10.1016/j.compstruct.2011.07.024

    Article  Google Scholar 

  39. Reddy JN (1997) Mechanics of laminated composite plates. CRC Press, Boca Raton

  40. Touratier M (1991) An efficient standard plate theory. Int J Eng Sci 29:901–916

    Article  MATH  Google Scholar 

  41. Karama M, Afaq KS, Mistou S (2003) Mechanical behavior of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity. Int J Solids Struct 40:1525–1546

    Article  MATH  Google Scholar 

  42. Soldatos KP, Timarci T (1993) A unified formulation of laminated composites, shear deformable, five-degrees-of-freedom cylindrical shell theories. Compos Struct 25:165–171

    Article  Google Scholar 

  43. Aydogdu M (2009) A new shear deformation theory for laminated composite plates. Compos Struct 89:94–101. doi:10.1016/j.compstruct.2008.07.008

    Article  Google Scholar 

  44. Daneshmehr AR, Nateghi A, Inman DJ (2013) Free vibration analysis of cracked composite beams subjected to coupled bending–torsion loads based on a first order shear deformation theory. Appl Math Model 37:10074–10091. doi:10.1016/j.apm.2013.05.062

    Article  MathSciNet  Google Scholar 

  45. Shu C (1991) Generalized differential-integral quadrature and application to the simulation of incompressible viscous flows including parallel computation. Ph.D. Thesis, Univerity of Glasgow

  46. Bellman R, Kashef BG, Casti J (1972) Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J Comput Phys 10:40–52

    Article  MathSciNet  MATH  Google Scholar 

  47. Shu C, Du H (1997) Implement of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates. Int J Solids Struct 19:59–68

    MATH  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Dr. Mohammed Ibrahim Shaat for his encouragement and helpful comments on preparing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Shariati.

Additional information

Technical Editor: Alberto Fancello.

Appendix

Appendix

The component of matrices \({\bar{\mathbf{A}}}\), \({\bar{\mathbf{B}}},\) and \({\bar{\mathbf{C}}}\) can be represented as follows, when the boundary conditions do not apply. If the boundary conditions are considered, rows 1, N, N + 1, 2 N, 2 N + 1, and 3 N change according to the corresponding boundary conditions.

$${\bar{\mathbf{A}}} = \left[ {\bar{a}_{ij} } \right]_{3N \times 3N} ,\,\,\,\,\,\,\,\,{\bar{\mathbf{B}}} = \left[ {\bar{b}_{ij} } \right]_{3N \times 3N} \,,\,\,\,\,\,\,\,\,{\bar{\mathbf{C}}} = \left[ {\bar{c}_{ij} } \right]_{3N \times 3N}$$
$$\bar{a}_{ij} = \left\{ {\begin{array}{*{20}c} {A_{1} c_{ij}^{(2)} } & {i,j = 1, \ldots ,N} \\ { - A_{2} c_{ij}^{(3)} } & {i = 1, \ldots ,N;\,j = N + 1, \ldots ,2N} \\ {A_{4} c_{ij}^{(2)} } & {i = 1, \ldots ,N;\,j = 2N + 1, \ldots ,3N} \\ {A_{2} c_{ij}^{(3)} } & {i = N + 1, \ldots ,2N;\,j = 1, \ldots ,N} \\ { - A_{3} c_{ij}^{(4)} } & {i = N + 1, \ldots ,2N;\,j = N + 1, \ldots ,2N} \\ {A_{5} c_{ij}^{(3)} } & {i = N + 1, \ldots ,2N;\,j = 2N + 1, \ldots ,3N} \\ {A_{4} c_{ij}^{(2)} } & {i = 2N + 1, \ldots ,3N;\,j = 1, \ldots ,N} \\ { - A_{5} c_{ij}^{(3)} } & {i = 2N + 1, \ldots ,3N;\,j = N + 1, \ldots ,2N} \\ {A_{6} c_{ij}^{(2)} } & {i = 2N + 1, \ldots ,3N;\,j = 2N + 1, \ldots ,3N} \\ \end{array} } \right.$$
(38)
$$\bar{b}_{ij} = \left\{ {\begin{array}{*{20}c} {B_{1} } & {i,j = 1, \ldots ,N} \\ { - B_{2} c_{ij}^{(1)} } & {i = 1, \ldots ,N;\,j = N + 1, \ldots ,2N} \\ {B_{4} } & {i = 1, \ldots ,N;\,j = 2N + 1, \ldots ,3N} \\ {B_{2} c_{ij}^{(1)} } & {i = N + 1, \ldots ,2N;\,j = 1, \ldots ,N} \\ { - B_{3} c_{ij}^{(2)} } & {i = N + 1, \ldots ,2N;\,j = N + 1, \ldots ,2N} \\ {B_{5} c_{ij}^{(1)} } & {i = N + 1, \ldots ,2N;\,j = 2N + 1, \ldots ,3N} \\ {B_{4} } & {i = 2N + 1, \ldots ,3N;\,j = 1, \ldots ,N} \\ { - B_{5} c_{ij}^{(1)} } & {i = 2N + 1, \ldots ,3N;\,j = N + 1, \ldots ,2N} \\ {B_{6} } & {i = 2N + 1, \ldots ,3N;\,j = 2N + 1, \ldots ,3N} \\ \end{array} } \right.$$
(39)
$$\bar{c}_{ij} = \left\{ {\begin{array}{*{20}c} 0 & {i = 1, \ldots ,N;\,j = 1, \ldots ,3N} \\ 0 & {i = 1, \ldots ,3N;\,j = 1, \ldots ,N} \\ { - \xi^{2} C_{1} c_{ij}^{(4)} } & {i = N + 1, \ldots ,2N;\,j = N + 1, \ldots ,2N} \\ {\frac{1}{2}\xi^{2} C_{2} c_{ij}^{(3)} } & {i = N + 1, \ldots ,2N;\,j = 2N + 1, \ldots ,3N} \\ { - \frac{1}{2}\xi^{2} C_{2} c_{ij}^{(3)} } & {i = 2N + 1, \ldots ,3N;\,j = N + 1, \ldots ,2N} \\ {\frac{1}{4}\xi^{2} \left( {C_{3} c_{ij}^{(2)} - C_{4} } \right)} & {i = 2N + 1, \ldots ,3N;\,j = 2N + 1, \ldots ,3N} \\ \end{array} } \right.$$
(40)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarzadeh Khorshidi, M., Shariati, M. Free vibration analysis of sigmoid functionally graded nanobeams based on a modified couple stress theory with general shear deformation theory. J Braz. Soc. Mech. Sci. Eng. 38, 2607–2619 (2016). https://doi.org/10.1007/s40430-015-0388-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0388-3

Keywords

Navigation