Skip to main content
Log in

Investigation of engine oil micro-droplets deposition using a round impinging jet

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The impaction and deposition of engine oil micro-droplets (0.1–6 µm in diameter) injected from a round impinging jet on a cold flat plate has been studied numerically and experimentally. The effect of flow velocity, droplet size, H/D (distance between plate and impaction nozzle to the impaction nozzle diameter) on the impaction and deposition efficiencies were considered. Numerical simulation was performed with DPM (discrete phase method) and turbulent models of SST k-ω and RSM. To validate the numerical results, a special test rig was designed and constructed. The findings show that the SST k-ω model produces results that are more coherent with experimental results; impaction efficiency is significantly greater than deposition efficiency for lower Stokes numbers (smaller droplets) and the impaction and deposition efficiencies are maximum when the Stokes number is ≈1. This maximum peak is a function of physical parameters such as H/D and air flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ye Z, Meng Q, Mohamadian HP, Wang JT, Chen L, Zhu L (2007) Investigation of deposit formation mechanisms for engine in-cylinder combustion and exhaust systems using quantitative analysis and sustainability study. Int J Thermophys 28(3):1056–1066. doi:10.1007/s10765-007-0228-5

    Article  Google Scholar 

  2. Horn M, Schmid HJ (2008) A comprehensive approach in modeling Lagrangian particle deposition in turbulent boundary layers. Powder Technol 186(3):189–198. doi:10.1016/j.powtec.2007.11.048

    Article  Google Scholar 

  3. Smith GC, Hopwood AB, Titchener KJ (2002) Microcharacterization of heavy-duty diesel engine piston deposits. Surf Interface Anal 33(3):259–268. doi:10.1002/sia.1209

    Article  Google Scholar 

  4. Moshfegh A, Farhadi M, Shams M (2010) Numerical simulation of particle dispersion and deposition in channel flow over two square cylinders in Tandem. J Dispers Sci Technol 31(6):852–859. doi:10.1080/01932690903333689

    Article  Google Scholar 

  5. Kim M-K, Kim W-G, Lee K-S, Yook S-J (2014) Collection efficiency of round-nozzle impactors with horizontal annular inlet. J Aerosol Sci 74:63–69. doi:10.1016/j.jaerosci.2014.04.007

    Article  Google Scholar 

  6. Sarimeseli A, Kelbaliyev G (2008) Deposition of dispersed particles in isotropic turbulent flow. J Dispers Sci Technol 29(2):307–312. doi:10.1080/01932690701688839

    Article  Google Scholar 

  7. Jayaraju ST, Brouns M, Verbanck S, Lacor C (2007) Fluid flow and particle deposition analysis in a realistic extrathoracic airway model using unstructured grids. J Aerosol Sci 38(5):494–508. doi:10.1016/j.jaerosci.2007.03.003

    Article  Google Scholar 

  8. Rioboo R, Tropea C, Marengo M (2001) Outcomes from a drop impact on solid surfaces. At Sprays 11(2):12. doi:10.1615/AtomizSpr.v11.i2.40

    Article  Google Scholar 

  9. Sacomano Filho F, Fukumasu N, Krieger G (2013) Numerical simulation of an ethanol turbulent spray flame with RANS and diffusion combustion model. J Braz Soc Mech Sci Eng 35(3):189–198. doi:10.1007/s40430-013-0029-7

    Article  Google Scholar 

  10. Singh H, Sidhu TS, Kalsi SBS, Karthikeyan J (2013) Development of cold spray from innovation to emerging future coating technology. J Braz Soc Mech Sci Eng 35(3):231–245. doi:10.1007/s40430-013-0030-1

    Article  Google Scholar 

  11. Šikalo Š, Marengo M, Tropea C, Ganić EN (2002) Analysis of impact of droplets on horizontal surfaces. Exp Thermal Fluid Sci 25(7):503–510. doi:10.1016/S0894-1777(01)00109-1

    Article  Google Scholar 

  12. Andreassi L, Ubertini S, Allocca L (2007) Experimental and numerical analysis of high pressure diesel spray–wall interaction. Int J Multiph Flow 33(7):742–765. doi:10.1016/j.ijmultiphaseflow.2007.01.003

    Article  Google Scholar 

  13. Zhang Y, Jia M, Liu H, Xie M, Wang T, Zhou L (2014) Development of a new spray/wall interaction model for diesel spray under PCCI-engine relevant conditions. At Sprays 24(1):41–80. doi:10.1615/AtomizSpr.008287

    Article  Google Scholar 

  14. Steele A, Bayer I, Loth E (2009) Inherently superoleophobic nanocomposite coatings by spray atomization. Nano Lett 9(1):501–505. doi:10.1021/nl8037272

    Article  Google Scholar 

  15. Deng X, Mammen L, Butt HJ, Vollmer D (2012) Candle soot as a template for a transparent robust superamphiphobic coating. Science 335(6064):67–70. doi:10.1126/science.1207115

    Article  Google Scholar 

  16. Artus GR, Zimmermann J, Reifler FA, Brewer SA, Seeger S (2012) A superoleophobic textile repellent towards impacting drops of alkanes. Appl Surf Sci 258(8):3835–3840. doi:10.1016/j.apsusc.2011.12.041

    Article  Google Scholar 

  17. Ghielmetti C (2001) Experimental analysis of a spray impinging on a conical surface. Int J Therm Sci 40(3):249–254. doi:10.1016/S1290-0729(00)01214-X

    Article  Google Scholar 

  18. Lunkad SF, Buwa VV, Nigam KDP (2007) Numerical simulations of drop impact and spreading on horizontal and inclined surfaces. Chem Eng Sci 62(24):7214–7224. doi:10.1016/j.ces.2007.07.036

    Article  Google Scholar 

  19. Ehteram MA, Basirat Tabrizi H, Ahmadi G, Safari M, Agha Mirsalim M (2013) Investigation of fine droplet generation from hot engine oil by impinging gas jets onto liquid surface. J Aerosol Sci 65:49–57. doi:10.1016/j.jaerosci.2013.07.004

    Article  Google Scholar 

  20. Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605. doi:10.2514/3.12149

    Article  Google Scholar 

  21. Zhang P, Roberts RM, Bénard A (2012) Computational guidelines and an empirical model for particle deposition in curved pipes using an Eulerian-Lagrangian approach. J Aerosol Sci 53:1–20. doi:10.1016/j.jaerosci.2012.05.007

    Article  Google Scholar 

  22. Issa RI (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys 62(1):40–65. doi:10.1016/0021-9991(86)90099-9

    Article  MathSciNet  MATH  Google Scholar 

  23. Bazdidi-Tehrani F, Karami M, Jahromi M (2011) Unsteady flow and heat transfer analysis of an impinging synthetic jet. Heat Mass Transf 47(11):1363–1373. doi:10.1007/s00231-011-0801-0

    Article  Google Scholar 

  24. Hutchinson P, Hewitt GF, Dukler AE (1971) Deposition of liquid or solid dispersions from turbulent gas streams: a stochastic model. Chem Eng Sci 26(3):419–439. doi:10.1016/0009-2509(71)83016-6

    Article  Google Scholar 

  25. Kallio GA, Reeks MW (1989) A numerical simulation of particle deposition in turbulent boundary layers. Int J Multiph Flow 15(3):433–446. doi:10.1016/0301-9322(89)90012-8

    Article  Google Scholar 

  26. Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22(2):385–400. doi:10.1017/S0022112065000824

    Article  MATH  Google Scholar 

  27. Petkov JT, Denkov ND, Danov KD, Velev OD, Aust R, Durst F (1995) Measurement of the drag coefficient of spherical particles attached to fluid interfaces. J Colloid Interface Sci 172(1):147–154. doi:10.1006/jcis.1995.1237

    Article  Google Scholar 

  28. Mundo C, Sommerfeld M, Tropea C (1995) Droplet-wall collisions: experimental studies of the deformation and breakup process. Int J Multiph Flow 21(2):151–173. doi:10.1016/0301-9322(94)00069-V

    Article  MATH  Google Scholar 

  29. Satoh K, Kawai T, Ishikawa M, Matsuoka T (2000) Development of method for predicting efficiency of oil mist separators. SAE Technical Paper 2000-01-1234. doi:10.4271/2000-01-1234

  30. Maestro A, Guzmán E, Ortega F, Rubio RG (2014) Contact angle of micro- and nanoparticles at fluid interfaces. Curr Opin Colloid Interface Sci 19(4):355–367. doi:10.1016/j.cocis.2014.04.008

    Article  Google Scholar 

  31. Ranz WE, Wong JB (1952) Impaction of dust and smoke particles on surface and body collectors. Ind Eng Chem 44(6):1371–1381. doi:10.1021/ie50510a050

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Mousapour Khaneshan.

Additional information

Technical Editor: Luis Fernando Figueira da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaeefard, M.H., Mousapour Khaneshan, V., Yosri, M.R. et al. Investigation of engine oil micro-droplets deposition using a round impinging jet. J Braz. Soc. Mech. Sci. Eng. 38, 721–734 (2016). https://doi.org/10.1007/s40430-015-0356-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0356-y

Keywords

Navigation