Skip to main content
Log in

Optimized design of linear cascades for turbomachinery applications

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a cascade optimization methodology for representing axial turbomachinery profiles of series NACA-65. In geometrical parameterization scheme of the cascade the following are considered as design variables: the stagger angle, cascade pitch, and camber line. For the calculation of the flow, the panel method of Hess and Smith with modifications is used to introduce the viscous effects by calculating the boundary layer. This methodology used a viscous/inviscid interaction and has as advantage the low computational cost and being favorable for the optimization process. The maximization of the relationship between the lift and the drag coefficient was defined as objective function and was added a penalty function, given by the minimum deflection angle of the flow in the cascade. For the optimal solution, a controlled random search algorithm is used. On the other hand, is also constructed a response surface by interpolation of radial basis functions to obtain comparative analysis of the solutions. Results of pressure distributions and aerodynamic coefficients are also obtained for the optimal cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Albuquerque RBF, Manzanares Filho N, Oliveira W (2006) A study of controlled random search algorithms with application to conceptual design optimization of axial-flow hydraulic turbines. In: Proceedings of the XXVII CILAMCE, Belém, PA, Brazil, code CIL09-508

  2. Ali AMM, Torn A, Viitanen S (1997) A numerical comparison of some modified controlled random search algorithms. J Global Optim 11:377–385

    Article  MathSciNet  MATH  Google Scholar 

  3. Ali MM, Torn A (2004) Population set-based global optimization algorithms: some modifications and numerical studies. Comput Oper Res 31:1703–1725

    Article  MathSciNet  MATH  Google Scholar 

  4. Castilho L (2013) Otimização de Grades Lineares para Aplicação em Turbomáquinas, Dissertação de Mestrado, UNIFEI, Itajubá, Mg. Brasil

  5. Castilho L, Camacho RGR, DA Silva ER (2012) Soluçoes otimizadas em grades de Turbomaquinas axiais. In: III CAIM - Tercer Congreso Argentino de Ingeniería Mecánica, 2012, Buenos Aires. CAIM - Tercer Congreso Argentino de Ingeniería Mecánica

  6. Cebeci T, Bradshaw P (1977) Momentum transfer in boundary layers. McGraw-Hill/Hemisphere, Washington, D.C

    MATH  Google Scholar 

  7. Chen CS, Hon YC, Schaback RA (2007) Scientific computing with radial basis functions

  8. Emery JC, Herring LJ, Erwin JR, Felix AR (1957) Systematic two-dimensional cascade tests of NACA 65—series compressor blades at low speeds, Report 1368 NACA, pp 1–85

  9. Giannakoglou KC (2002) Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence. Prog Aerosp Sci 38:43–76

    Article  Google Scholar 

  10. Hardy RL (1971) Multiquadric equations of topografhy and other irregular surfaces. J Geophys Res 76:1905–1915

    Article  Google Scholar 

  11. Hess JL, Smith AMO (1967) Calculation of potential flow about arbitrary bodies. Prog Aeronaut Sci 8:1–138

    Article  MATH  Google Scholar 

  12. Lieblein S (1959) Loss and stall analysis of compressor cascades. J Basic Eng 387–400

  13. Lieblein S (1965) Experimental flow in two-dimensional cascades, section VI, NASA–SP 36

  14. Lighthill MJ (1958) On displacement thickness. J Fluid Mech 4:383

    Article  MathSciNet  MATH  Google Scholar 

  15. Petrucci RD (1998) Problema Inverso do escoamento em torno de perfis Aerodinâmicos isolados e em grades de turbomáquinas, Tese de Mestrado, EFEI, Itajubá, Mg. Brasil

  16. Price WL (1977) A controlled random search procedure for global optimization. Comput J 20(4):367–370

    Article  MATH  Google Scholar 

  17. Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Tucker PK (2005) Surrogate-based analysis and optimization. Prog Aerosp Sci 41(1):1–28

    Article  Google Scholar 

  18. Ramirez RGC (2001) Análise do Escoamento em Grades de Turbomáquinas Axiais Incluindo o Efeito de Separação da Camada-Limite. Tese (Doutorado), Universidade Federal de Itajubá, UNIFEI

  19. Regis RG, Shoemaker CA (2005) Constrained global optimization of expensive black box functions using radial basis functions. J Global Optim 31:153–171

    Article  MathSciNet  MATH  Google Scholar 

  20. Schlichting H (1959) Application of boundary-layer theory in turbomachinery. J Basic Eng 81:543–551

    Google Scholar 

  21. Silva ER (2011) Técnicas de Metamodelagem Aplicadas à Otimização de Turbomáquinas, Itajubá, 160 p. Tese (Doutorado em Engenharia Mecânica), Instituto de Engenharia Mecânica, Universidade Federal de Itajubá

  22. Simpson TW, Booker AJ, Ghosh D, Giunta AA, Koch PN, Yang RJ (2004) Approximation methods in multidisciplinary analysis and optimization: a panel discussion. Struct Multidiscip Optim 27(5):302–313

    Article  Google Scholar 

  23. Speidel L (1954) Berechnung der Strömungsverluste von Ungestaffelten Ebenen Schaufelgitter. Ingenieur-Archiv 22:295–322

    Article  MATH  Google Scholar 

  24. Wang GG, Shan S (2007) Review of metamodeling techniques in support of engineering design optimization. ASME J Mech Des 129:370–380

    Article  Google Scholar 

  25. Hayashi M, Endo E (1977) Performance calculation for multi-element airfoil sections with separation. Trans Japan Soc Aero Space Sci 20(49):151–164

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramiro Gustavo Ramirez Camacho.

Additional information

Technical Editor: Francisco Ricardo Cunha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castilho, L., Camacho, R.G.R. & da Silva, E.R. Optimized design of linear cascades for turbomachinery applications. J Braz. Soc. Mech. Sci. Eng. 38, 813–825 (2016). https://doi.org/10.1007/s40430-015-0338-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0338-0

Keywords

Navigation