Skip to main content
Log in

Time-periodic non-Newtonian power-law flow across a triangular prism

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The effects of non-Newtonian power-law fluids on the unsteady unconfined fluid flow characteristics of an equilateral triangular prism are investigated for Reynolds number (Re) ranging from 50 to 150 and power-law index (n) ranging from 0.4 to 1.8. The flow field around a triangular prism is represented by streamline contours. The output parameters such as root-mean-square values of lift and drag coefficients, time-averaged drag and lift coefficients and Strouhal number are calculated. A time-periodic behavior of the flow is observed for the entire range of control parameters studied. An increment in the time-averaged total drag coefficient is observed with the increase in Re for pseudo-plastic and Newtonian fluids. However, for dilatant fluids, a mixed trend is observed when time-averaged total drag coefficient is varied with n. There is an enhancement in the value of Strouhal number with the increase in Re for dilatant fluids, whereas a mixed trend of Strouhal number with Re is noticed for pseudo-plastic fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

B :

Side of an equilateral triangular prism (m)

C D :

Total drag coefficient (–)

\(\overline{{C_{\text{D}} }}\) :

Time-averaged drag coefficient (–)

C DF :

Friction drag coefficient (–)

C DP :

Pressure drag coefficient (–)

C Drms :

Rms value of the drag coefficient (–)

C L :

Total lift coefficient (–)

C Lrms :

Rms lift coefficient (–)

C p :

Pressure coefficient (–)

f :

Vortex shedding frequency (s−1)

F D :

Drag force per unit length of prism (Nm−1)

F DF :

Friction drag force per unit length of prism (Nm−1)

F DP :

Pressure drag force per unit length of prism (Nm−1)

F L :

Lift force per unit length of prism (Nm−1)

H :

Domain height (m)

I ij :

Second invariant of the strain tensor rate (s−2)

L :

Domain length (m)

m :

Power-law consistency index (Pa sn)

n :

Power-law index (–)

n s :

Direction vector normal to the surface of the prism (–)

n x :

x-Component of the direction vector normal to the surface of the prism (–)

p :

Dimensionless pressure (=p*/(ρ \(U_{\infty }^{2}\)))

Re:

Reynolds number (–)

s :

Surface of the triangular prism (–)

St:

Strouhal number (–)

t :

Time (s)

T:

Time period for one cycle (s)

\(U_{\infty }\) :

Uniform velocity at the inlet (m s−1)

U x :

x-Component of velocity (=U * x /\(U_{\infty }\))

U y :

y-Component of velocity (=U * y /\(U_{\infty }\))

U * x , U * y :

Velocity components in x- and y- directions, respectively (m s−1)

X d , X u :

Downstream and upstream distances, respectively (m)

x, y :

Dimensionless coordinates (=\(x^{*} /B\), \(y^{*} /B\))

x*, y* :

Cartesian coordinates (m)

ε :

Component of the strain tensor rate (s−1)

\({\varvec{\upsigma}}\) :

Stress tensor (Pa)

\({\varvec{\uptau}}\) :

Extra stress tensor (Pa)

η :

Fluid viscosity (Pa s)

ρ :

Density (kg m−3)

δ :

Smallest cell size (m)

\(\varphi_{\text{rms}}\) :

Rms value of any specific quantity (\(\varphi\))

rms:

Root mean square value

*:

Dimensional value

References

  1. Chhabra RP, Richardson JF (1999) Non-Newtonian flow in the process industries. Butterworth-Heinemann, Oxford

    Google Scholar 

  2. Chhabra RP, Richardson JF (2008) Non-Newtonian flow and applied rheology, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  3. Coelho PM, Pinho FT (2003) Vortex shedding in cylinder flow of shear-thinning fluids, I. Identification and demarcation of flow regimes. J Non-Newton Fluid Mech 110:143–176

    Article  MATH  Google Scholar 

  4. Coelho PM, Pinho FT (2003) Vortex shedding in cylinder flow of shear-thinning fluids, II. Flow characteristics. J Non-Newton Fluid Mech 110:177–193

    Article  MATH  Google Scholar 

  5. Coelho PM, Pinho FT (2004) Vortex shedding in cylinder flow of shear-thinning fluids, III. Pressure measurements. J Non-Newton Fluid Mech 121:55–68

    Google Scholar 

  6. Sabiri N-E, Chhabra RP, Comiti J, Montillet A (2012) Measurement of shear rate on the surface of a cylinder submerged in laminar flow of power-law fluids. Exp Thermal Fluid Sci 39:167–175

    Article  Google Scholar 

  7. Bharti RP, Chhabra RP, Eswaran V (2006) Steady flow of power-law fluids across a circular cylinder. Can J Chem Eng 84:406–421

    Article  Google Scholar 

  8. Patnana VK, Bharti RP, Chhabra RP (2009) Two-dimensional unsteady flow of power-law fluids over a cylinder. Chem Eng Sci 64:2978–2999

    Article  Google Scholar 

  9. Chhabra RP (2011) Fluid flow and heat transfer from circular and non-circular cylinders submerged in non-Newtonian liquids. Adv Heat Transf 43:289–417

    Article  Google Scholar 

  10. Dhiman AK, Chhabra RP, Eswaran V (2006) Steady flow of power-law fluids across a square cylinder. Chem Eng Res Des 84:300–310

    Article  Google Scholar 

  11. Sahu AK, Chhabra RP, Eswaran V (2009) Two-dimensional unsteady laminar flow of a power-law fluid across a square cylinder. J Non-Newton Fluid Mech 160:157–167

    Article  MATH  Google Scholar 

  12. Rao PK, Sahu AK, Chhabra RP (2011) Momentum and heat transfer from a square cylinder in power-law fluids. Int J Heat Mass Transf 54:390–403

    Article  MATH  Google Scholar 

  13. Jackson CP (1987) A finite-element study of the onset of vortex shedding in flow past variously shaped bodies. J Fluid Mech 182:23–45

    Article  MATH  Google Scholar 

  14. De AK, Dalal A (2006) Numerical simulation of unconfined flow past a triangular cylinder. Int J Numer Meth Fluids 52:801–821

    Article  MATH  Google Scholar 

  15. Dalal A, Eswaran V, Biswas G (2008) A finite-volume method for Navier-Stokes equations on unstructured meshes. Numer Heat Transf Part B 54:238–259

    Article  Google Scholar 

  16. Dhiman A, Shyam R (2011) Unsteady heat transfer from an equilateral triangular cylinder in the unconfined flow regime. ISRN Mech Eng 2011:1–13

    Article  Google Scholar 

  17. Zeitoun O, Ali M, Nuhait A (2011) Convective heat transfer around a triangular cylinder in an air cross flow. Int J Thermal Sci 50:1685–1697

    Article  Google Scholar 

  18. Chatterjee D, Mondal B (2012) Forced convection heat transfer from an equilateral triangular cylinder at low Reynolds numbers. Heat Mass Transf 48:1575–1587

    Article  Google Scholar 

  19. El-Sherbiny S (1983) Flow separation and reattachment over the sides of a 90° triangular prism. J Wind Eng Ind Aerodyn 11:393–403

    Article  Google Scholar 

  20. El-Wahed AK, Johnson MW, Sproston JL (1993) Numerical study of vortex shedding from different shaped bluff bodies. Flow Meas Instrum 4:233–240

    Article  Google Scholar 

  21. Buresti G, Lombardi G, Talamelli A (1998) Low aspect-ratio triangular prisms in cross-flow: measurements of the wake fluctuating velocity field. J Wind Eng Ind Aerodyn 74–76:463–473

    Article  Google Scholar 

  22. Csiba AL, Martinuzzi RJ (2008) Investigation of bluff body asymmetry on the properties of vortex shedding. J Wind Eng Ind Aerodyn 96:1152–1163

    Article  Google Scholar 

  23. Iungo GV, Buresti G (2009) Experimental investigation on the aerodynamics loads and wake flow features of low aspect-ratio triangular prisms at different wind directions. J Fluids Struct 25:1119–1135

    Article  Google Scholar 

  24. Ali M, Zeitoun O, Nuhait A (2011) Forced convection heat transfer over horizontal triangular cylinder in cross flow. Int J Thermal Sci 50:106–114

    Article  Google Scholar 

  25. Goujon-Durand S, Jenffer P, Wesfreid JE (1994) Downstream evolution of the Benard von Karman instability. Phys Rev E 50:308–313

    Article  Google Scholar 

  26. Zielinska BJA, Wesfreid JE (1995) On the spatial structure of global modes in wake flow. Phys Fluids 7:1418–1424

    Article  MATH  Google Scholar 

  27. Wesfreid JE, Goujon-Durand S, Zielinska BJA (1996) Global mode behaviour of the streamwise velocity in wake. J Phys 2:1343–1357

    Google Scholar 

  28. Abbassi H, Turki S, Nasrallah SB (2001) Numerical investigation of forced convection in a plane channel with a built-in triangular prism. Int J Thermal Sci 40:649–658

    Article  Google Scholar 

  29. Abbassi H, Turki S, Nasrallah SB (2001) Mixed convection in a plane channel with a built-in triangular prism. Numer Heat Transf Part A 39:307–320

    Article  Google Scholar 

  30. De AK, Dalal A (2007) Numerical study of laminar forced convection fluid flow and heat transfer from a triangular cylinder placed in a channel. J Heat Transf 129:646–656

    Article  Google Scholar 

  31. Mohsenzedh A, Farhadi M, Sedighi K (2010) Convective cooling of tandem heated triangular cylinders placed in a channel. Thermal Sci 14:183–197

    Google Scholar 

  32. Farhadi M, Sedighi K, Korayem AM (2010) Effect of wall proximity on forced convection in a plane channel with a built-in triangular cylinder. Int J Thermal Sci 49:1010–1018

    Article  Google Scholar 

  33. Srikanth S, Dhiman AK, Bijjam S (2010) Confined flow and heat transfer across a triangular cylinder in a channel. Int J Thermal Sci 49:2191–2200

    Article  Google Scholar 

  34. Chattopadhyay H (2007) Augmentation of heat transfer in a channel using a triangular prism. Int J Thermal Sci 46:501–505

    Article  Google Scholar 

  35. Manay E, Gunes S, Akcadirci E, Ozceyhan V (2010) Numerical analysis of heat transfer and pressure drop in a channel equipped with triangular bodies in side-by-side arrangement. Online J Power Energy Eng 1:85–89

    Google Scholar 

  36. Eiamsa-ard S, Sripattanapipat S, Promvonge P (2012) Numerical heat transfer analysis in turbulent channel flow over a side-by-side triangular prism pair. J Eng Thermophys 21:95–110

    Article  Google Scholar 

  37. Prhashanna A, Sahu AK, Chhabra RP (2011) Flow of power-law fluids past an equilateral triangular cylinder: momentum and heat transfer characteristics. Int J Thermal Sci 50:2027–2041

    Article  Google Scholar 

  38. Dhiman AK, Kumar S (2013) Non-Newtonian power-law flow across a confined triangular bluff body in a channel, Korean. J Chem Eng 30:33–44

    Google Scholar 

  39. Pinho FT, Oliveira PJ, Miranda JP (2003) Pressure losses in the laminar flow of shear-thinning power-law fluids across a sudden axisymmetric expansion. Int J Heat Fluid Flow 24:747–761

    Article  Google Scholar 

  40. Ansys (2009) ANSYS user manual, Ansys, Inc., Canonsburg, PA

  41. Robichaux J, Balachandar S, Vanka SP (1999) Two-dimesional floquet instability of the wake of square cylinder. Phys Fluids 11:560–578

    Article  MathSciNet  MATH  Google Scholar 

  42. Luo SC, Chew YT, Ng YT (2003) Characteristics of square cylinder wake transition flows. Phys Fluids 15:2549–2559

    Article  Google Scholar 

  43. Roache PJ (1998) Verification and validation in computational science and engineering. Hermosa Publishers, Albuquerque

    Google Scholar 

  44. Agarwal R, Dhiman A (2014) Flow and heat transfer phenomena across two confined tandem heated triangular bluff bodies. Numer Heat Transf Part A 66:1020–1047

    Article  Google Scholar 

  45. Agarwal R, Dhiman A (2015) Confined flow and heat transfer phenomena of non-Newtonian shear-thinning fluids across a pair of tandem triangular bluff bodies. Numer Heat Transf Part A. doi:10.1080/10407782.2014.977120 (In press)

  46. Bijjam S, Dhiman AK (2012) CFD analysis of two-dimensional non-Newtonian power-law flow across a circular cylinder confined in a channel. Chem Eng Commun 199:767–785

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Dhiman.

Additional information

Technical Editor: Monica Feijo Naccache.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, R., Dhiman, A. Time-periodic non-Newtonian power-law flow across a triangular prism. J Braz. Soc. Mech. Sci. Eng. 38, 227–240 (2016). https://doi.org/10.1007/s40430-015-0332-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0332-6

Keywords

Navigation