Skip to main content
Log in

Numerical investigation of MHD water-based nanofluids flow in porous medium caused by shrinking permeable sheet

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 25 July 2016

Abstract

In this work, a numerical method is applied to investigate the magnetohydrodynamic flow and heat transfer of several nanofluids caused by a shrinking sheet in a porous medium. The influences of several parameters such as nanoparticle volume fraction, suction parameter, and the Hartmann number on the heat transfer rate, velocity, and temperature profiles and also skin friction are presented and studied. In addition, it is observed that by increasing the nanoparticle volume fraction, the temperature profile, skin friction, and Nusselt number increase, while the velocity profile has not changed remarkably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

u :

Velocity component along the x direction

v :

Velocity component along the y direction

w :

Velocity component along the z direction

k f :

Thermal conductivity of the base fluid

k s :

Thermal conductivity of the nanoparticle

k nf :

Thermal conductivity of the nanofluid

M :

Hartman number

S :

Suction/blowing parameter

Pr :

Prandtl number

C f :

Skin friction coefficient

Nu x :

Local Nusselt number

U :

Free stream velocity

q w :

Heat transfer from the surface

Re x :

Local Reynolds number

T w :

Wall temperature

T :

Far field stream temperature

τ w :

Wall shear stress

λ 1 :

Constant from power law

ρ f :

Density of the base fluid

ρ nf :

Density of the nanofluid

μ f :

Viscosity of the base fluid

μ nf :

Viscosity of the nanofluid

\( \phi \) :

Nanoparticle volume fraction

λ :

Porosity

f:

Base fluid

s:

Nanoparticle

nf:

Nanofluid

References

  1. Crane LJ (1970) Flow past a stretching plate. ZAMP 21:645–647

    Article  Google Scholar 

  2. Wang CY (1984) The three dimensional flow due to a stretching flat surface. Phys Fluids 27:1915–1917

    Article  MathSciNet  MATH  Google Scholar 

  3. Gupta PS, Gupta AS (1977) Heat and mass transfer on a stretching sheet with suction and blowing. Can J Chem Eng 55:744–746

    Article  Google Scholar 

  4. Ariel PD, Hayat T, Asghar S (2006) Homotopy perturbation method and axisymmetric flow over a stretching sheet. Int J Nonlinear Sci Numer Simul 7:399–406

    Article  Google Scholar 

  5. Cortell R (2005) Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat generation/absorption and suction/blowing. Fluid Dyn Res 37:231–245

    Article  MATH  Google Scholar 

  6. Cortell R (2007) MHD flow and mass transfer of an electrically conducting fluid of second grade in a porous medium over a stretching sheet with chemically reactive species. Chem Eng Process 46:721–728

    Article  Google Scholar 

  7. Xu H, Liao SJ, Pop I (2007) Series solutions of unsteady three-dimensional MHD flow and heat transfer in the boundary layer over an impulsively stretching plate. Eur J Mech B Fluids 26:15–27

    Article  MathSciNet  MATH  Google Scholar 

  8. Hayat T, Javed T (2007) On analytic solution for generalized three-dimensional MHD flow over a porous stretching sheet. Phys Lett A 370:243–250

    Article  MathSciNet  MATH  Google Scholar 

  9. Ayub M, Zaman H, Sajid M, Hayat T (2008) Analytical solution of stagnation-point flow of a viscoelastic fluid towards a stretching surface. Commun Nonlinear Sci Numer Simul 13:1822–1835

    Article  MathSciNet  MATH  Google Scholar 

  10. Hayat T, Abbas Z, Javed T (2008) Mixed convection flow of a micropolar fluid over a non-linearly stretching sheet. Phys Lett A 372:637–647

    Article  MATH  Google Scholar 

  11. Ishak A, Nazar R, Pop I (2008) Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet. Heat Mass Transfer 44(8):921–927

    Article  Google Scholar 

  12. Tadmor Z, Klein I (1970) Engineering Principles of Plasticating Extrusion., Polymer Science and Engineering SeriesVan Norstrand Reinhold, New York

    Google Scholar 

  13. Wang CY (1990) Liquid film on an unsteady stretching sheet. Q Appl Math 48:601–610

    MATH  Google Scholar 

  14. Miklavcic M, Wang CY (2006) Viscous flow due to a shrinking sheet. Q Appl Math 64:283–290

    Article  MathSciNet  MATH  Google Scholar 

  15. Sajid M, Hayat T (2007) The application of homotopy analysis method for MHD viscous flow due to a shrinking sheet. Chaos Solitons Fractals 39:1317–1323

    Article  MATH  Google Scholar 

  16. Hayat T, Abbas Z, Javed T, Sajid M (2007) Three-dimensional rotating flow induced by a shrinking sheet for suction. Chaos Solitons Fractals 39:1615–1626

    Article  MATH  Google Scholar 

  17. Sajid M, Javed T, Hayat T (2008) MHD rotating flow of a viscous fluid over a shrinking surface. Nonlinear Dyn 51:259–265

    Article  MATH  Google Scholar 

  18. Wang CY (2008) Stagnation flow towards a shrinking sheet. Int J Nonlinear Mech 43:377–382

    Article  Google Scholar 

  19. Ghasemi SE, Mehdizadeh Ahangar GHR (2014) Numerical analysis of performance of solar parabolic trough collector with Cu-Water nanofluid. Int J Nano Dimens 5(3):233–240

    Google Scholar 

  20. Ghasemi SE, Ranjbar AA, Ramiar A (2013) Numerical study on thermal performance of solar parabolic trough collector. J Math Comput Sci 7:1–12

    Article  Google Scholar 

  21. Ghasemi SE, Ranjbar AA, Ramiar A (2013) Three-dimensional numerical analysis of heat transfer characteristics of solar parabolic collector with two segmental rings. J Math Comput Sci 7:89–100

    Google Scholar 

  22. Ghasemi SE, Hatami M, Ganji DD (2013) Analytical thermal analysis of air-heating solar collectors. J Mech Sci Technol 27(11):3525–3530

    Article  Google Scholar 

  23. Ghasemi SE, Jalili Palandi S, Hatami M, Ganji DD (2012) Efficient analytical approaches for motion of a spherical solid particle in plane couette fluid flow using nonlinear methods. J Math Comput Sci 5(2):97–104

    Google Scholar 

  24. Ghasemi SE, Ali Z, Ganji DD (2014) Study on motion of rigid rod on a circular surface using MHPM. Propuls Power Res 3(3):159–164

    Article  Google Scholar 

  25. Ghasemi SE, Hatami M, Mehdizadeh Ahangar GHR, Ganji DD (2014) Electrohydrodynamic flow analysis in a circular cylindrical conduit using least square method. J Electrost 72:47–52

    Article  Google Scholar 

  26. Ghasemi SE, Hatami M, Ganji DD (2014) Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation. Case Stud Therm Eng 4:1–8

    Article  Google Scholar 

  27. Ghasemi SE, Valipour P, Hatami M, Ganji DD (2014) Heat transfer study on solid and porous convective fins with temperature-dependent heat generation using efficient analytical method. J Cent South Univ 21:4592–4598

    Article  Google Scholar 

  28. Oztop HF, Abu-Nada E (2008) Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow 29:1326–1336

    Article  Google Scholar 

  29. Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transfer 46:3639–3653

    Article  MATH  Google Scholar 

  30. Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571–581

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Ghasemi.

Additional information

Technical Editor: Francisco Ricardo Cunha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valipour, P., Ghasemi, S.E. Numerical investigation of MHD water-based nanofluids flow in porous medium caused by shrinking permeable sheet. J Braz. Soc. Mech. Sci. Eng. 38, 859–868 (2016). https://doi.org/10.1007/s40430-014-0303-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-014-0303-3

Keywords

Navigation