Skip to main content
Log in

Effect of uniform suction on nanofluid flow and heat transfer over a cylinder

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The aim of the present paper is to study the nanofluid flow and heat transfer over a stretching porous cylinder. The effective thermal conductivity and viscosity of the nanofluid are calculated by KKL (Koo–Kleinstreuer–Li) correlation. In KKL model, the effect of Brownian motion on the effective thermal conductivity is considered. The governing partial differential equations with the corresponding boundary conditions are reduced to a set of ordinary differential equations with the appropriate boundary conditions using similarity transformation, which is then solved numerically by the fourth-order Runge–Kutta integration scheme featuring a shooting technique. Numerical results for flow and heat transfer characteristics are obtained for various values of the nanoparticle volume fraction, suction parameter, Reynolds number and different kinds of nanofluids. Results show that inclusion of a nanoparticle into the base fluid of this problem is capable to change the flow pattern. It is found that Nusselt number is an increasing function of nanoparticle volume fraction, suction parameter and Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\( a \) :

Radius of cylinder

c :

Positive constant

C f :

Skin friction coefficient

f :

Dimensionless stream function

k :

Thermal conductivity

Nu :

Nusselt number

P :

Pressure

Pr :

Prandtl number

q w :

Surface heat flux

Re:

Reynolds number

T :

Fluid temperature

T w :

Temperature of the cylinder surface

T :

Ambient temperature

(u, w):

Velocity components in the) r, z) directions, respectively

(r, z):

Cylindrical coordinates in the radial and axial directions, respectively

ww :

Velocity of the stretching cylinder

α :

Thermal diffusivity

η :

Similarity variable

θ :

Dimensionless temperature

μ :

Dynamic viscosity

υ :

Kinematic viscosity

ρ :

Fluid density

τ w :

Surface shear stress

\( \psi \) :

Stream function

\( \gamma \) :

Suction parameter

w:

Condition at the surface

\( \infty \) :

Condition at infinity

nf:

Nanofluid

f:

Base fluid

s:

Nanosolid particles

References

  1. Wang X-Q, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46:1–19

    Article  MATH  Google Scholar 

  2. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles, The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD 66 99–105

  3. Das SK, Choi SUS, Yu W, Pradeep T (2007) Nanofluids: Sci Technol. Wiley, New Jersey

    Book  Google Scholar 

  4. Sheikholeslami M, Gorji Bandpy M, Ellahi R, Zeeshan A (2014) Simulation of MHD CuO–water nanofluid flow and convective heat transfer considering Lorentz forces. J Magn Magn Mater 369:69–80

    Article  Google Scholar 

  5. Rashidi MM, Abelman S, Freidooni Mehr N (2013) Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid, Intern J Heat Mass Transfer 62 515–525

  6. Sheikholeslami M, Gorji-Bandpy M, Ganji DD (2014) MHD free convection in an eccentric semi-annulus filled with nanofluid. J Taiwan Inst Chem Eng 45:1204–1216

    Article  Google Scholar 

  7. Hatami M, Sheikholeslami M, Hosseini M, Ganji DD (2014) Analytical investigation of MHD nanofluidflow in non-parallel walls. J Mol Liq 194:251–259

    Article  Google Scholar 

  8. Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Soleimani S (2014) Natural convection heat transfer in a nanofluid filled inclined L-shaped enclosure. IJST, Transac Mech Eng 38:217–226

    Google Scholar 

  9. Sheikholeslami M, Ganji DD (2014) Magnetohydrodynamic flow in a permeable channel filled with nanofluid, Scientia Iranica B 21(1), 203–212

  10. Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Rana P, Soleimani S (2014) Magnetohydrodynamic free convection of Al2O3-water nanofluid considering Thermophoresis and Brownian motion effects. Comput Fluids 94:147–160

    Article  MathSciNet  Google Scholar 

  11. Sheikholeslami Mohsen, Gorji-Bandpy Mofid (2014) Free convection of ferrofluid in a cavity heated from below in the presence of an external magnetic field. Powder Technol 256:490–498

    Article  Google Scholar 

  12. Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Soleimani S (2014) Thermal management for free convection of nanofluid using two phase model. J Mol Liq 194:179–187

    Article  Google Scholar 

  13. Sheikholeslami M, Ganji DD (2014) Numerical investigation for two phase modeling of nanofluid in a rotating system with permeable sheet. J Mol Liq 194:13–19

    Article  Google Scholar 

  14. Sheikholeslami M, Gorji-Bandpy M, Ganji DD (2014) Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid. Powder Technol 254:82–93

    Article  Google Scholar 

  15. Sheikholeslami M, Ganji DD (2014) Three dimensional heat and mass transfer in a rotating system using nanofluid. Powder Technol 253:789–796

    Article  Google Scholar 

  16. Hatami M, Sheikholeslami M, Ganji DD (2014) Laminar flow and heat transfer of nanofluid between contracting and rotating disks by least square method. Powder Technol 253:769–779

    Article  Google Scholar 

  17. Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Soleimani S (2014) Heat flux boundary condition for nanofluid filled enclosure in presence of magnetic field. J Mol Liq 193:174–184

    Article  Google Scholar 

  18. Sheikholeslami M, Hatami M, Ganji DD (2014) Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field. J Mol Liq 190:112–120

    Article  Google Scholar 

  19. Sheikholeslami M, Ganji DD, Gorji-Bandpy M, Soleimani S (2014) Magnetic field effect on nanofluid flow and heat transfer using KKL model. J Taiwan Inst Chem Eng 45:795–807

    Article  Google Scholar 

  20. Sheikholeslami M, Gorji-Bandpy M, Soleimani S (2013) Two phase simulation of nanofluid flow and heat transfer using heatline analysis. Intern Commun Heat Mass Transfer 47:73–81

    Article  Google Scholar 

  21. Sheikholeslami M, Gorji-Bandpy M, Ganji DD (2013) Numerical investigation of MHD effects on Al2O3-water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM. Energy 60:501–510

    Article  Google Scholar 

  22. Sheikholeslami M, Gorji Bandpy M, Ellahi R, Hassan M, Soleimani S (2014) Effects of MHD on Cu-water nanofluid flow and heat transfer by means of CVFEM. J Magn Mag Mater 349:188–200

    Article  Google Scholar 

  23. Sheikholeslami M, Bani Sheykholeslami F, Khoshhal S, Mola-Abasi H, Ganji DD, Rokni HB (2014) Effect of magnetic field on Cu–water nanofluid heat transfer using GMDH-type neural network, Neural Comput & Applic 25:171–178

  24. Sheikholeslami M, Gorji-Bandpy M, Pop I, Soleimani S (2013) Numerical study of natural convection between a circular enclosure and a sinusoidal cylinder using control volume based finite element method. Intern J Thermal Sci 72:147–158

    Article  Google Scholar 

  25. Ellahi R (2013) The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl Math Model 37(3):1451–1467

    Article  MathSciNet  Google Scholar 

  26. MM Rashidi, S Abelman, N Freidooni Mehr (2013) Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid, Intern J Heat Mass Transfer 62 515–525

  27. Sheikholeslami M, Gorji-Bandpy M, Seyyedi SM, Ganji DD, Rokni HB, Soleimani S (2013) Application of LBM in simulation of natural convection in a nanofluid filled square cavity with curve boundaries. Powder Technol 247:87–94

    Article  Google Scholar 

  28. Sheikholeslami M, Gorji-Bandpy M, Ganji DD (2013) Natural convection in a nanofluid filled concentric annulus between an outer square cylinder and an inner elliptic cylinder. Scientia Iranica, Transaction B: Mech Eng 20(4):1241–1253

    Google Scholar 

  29. Sheikholeslami M, Hatami M, Ganji DD (2013) Analytical investigation of MHD nanofluid flow in a semi-porous channel. Powder Technol 246:327–336

    Article  Google Scholar 

  30. Sheikholeslami M, Gorji-Bandpy M, Ganji DD (2014) Natural convection heat transfer in a cavity with sinusoidal wall filled with CuO–water nanofluid in presence of magnetic field. J Taiwan Inst Chem Eng 45:40–49

    Article  Google Scholar 

  31. Sheikholeslami M, Gorji-Bandpy M, Domairry G (2013) Free convection of nanofluid filled enclosure using lattice Boltzmann method (LBM). Appl Math Mech–Engl Ed 34(7):1–15

    Google Scholar 

  32. Sheikholeslami M, Gorji-Bandpy M, Ganji DD (2013) Soheil Soleimani, Effect of a magnetic field on natural convection in an inclined half-annulus enclosure filled with Cu–water nanofluid using CVFEM. Adv Powder Technol 24:980–991

    Article  Google Scholar 

  33. Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Soleimani S (2014) MHD natural convection in a nanofluid filled inclined enclosure with sinusoidal wall using CVFEM. Neural Compu Appl 24:873–882

    Article  Google Scholar 

  34. Sheikholeslami M, Ganji DD (2013) Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technol 235:873–879

    Article  Google Scholar 

  35. Soleimani S, Sheikholeslami M, Ganji DD, Gorji-Bandpay M (2012) Natural convection heat transfer in a nanofluid filled semi-annulus enclosure. Int Commun Heat Mass Transfer 39:565–574

    Article  Google Scholar 

  36. Sheikholeslami M, Gorji-Bandpay M, Ganji DD (2012) Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid. Int Commun Heat Mass Transfer 39:978–986

    Article  Google Scholar 

  37. Khan WA, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transfer 53:2477–2483

    Article  MATH  Google Scholar 

  38. Hayat T, Abbas Z, Pop I, Asghar S (2010) Effects of radiation and magnetic field on the mixed convection stagnation-point flow over a vertical stretching sheet in a porous medium. Int J Heat Mass Transf 53:466–474

    Article  MATH  Google Scholar 

  39. Hayat T, Qasim M (2010) Influence of thermal radiation and Joule heating on MHD flow of a Maxwell fluid in the presence of thermophoresis. Int J Heat Mass Transf 53:4780–4788

    Article  MATH  Google Scholar 

  40. Wang CY (1988) Fluid flow due to a stretching cylinder. Phys Fluids 31:466–468

    Article  Google Scholar 

  41. Al-Sanea SA (2004) Mixed convection heat transfer along a continuously moving heated vertical plate with suction or injection. Int J Heat Mass Transfer 47:1445–1465

    Article  MATH  Google Scholar 

  42. Datta P, Anilkumar D, Roy S, Mahanti NC (2006) Effect of non-uniform slot injection (suction) on a forced flow over a slender cylinder. Int J Heat Mass Transfer 49:2366–2371

    Article  MATH  Google Scholar 

  43. Kumari M, Nath G (2004) Mixed convection boundary layer flow over a thin vertical cylinder with localized injection/suction and cooling/heating. Int J Heat Mass Transfer 47:969–976

    Article  MATH  Google Scholar 

  44. Ishak A, Nazar R, Pop I (2008) Uniform suction/blowing effect on flow and heat transfer due to a stretching cylinder. Appl Math Model 32:2059–2066

    Article  MATH  Google Scholar 

  45. Koo J, Kleinstreuer C (2004) Viscous dissipation effects in micro tubes and micro channels. Int J Heat Mass Transf 47:3159–3169

    Article  Google Scholar 

  46. Koo J (2004) Computational nanofluid flow and heat transfer analyses applied to microsystems, Ph.D Thesis, NC State University, Raleigh, NC

  47. Prasher RS, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nano scale colloidal solution. Phys Rev Lett 94:025901-1–025901-4

    Article  Google Scholar 

  48. Jang SP, Choi SUS (2004) The role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316–4318

    Article  Google Scholar 

  49. Li J (2008) Computational analysis of nanofluid flow in micro channels with applications to micro-heat sinks and bio-MEMS, PhD Thesis NC State University, Raleigh, NC, the United States

  50. Koo J, Kleinstreuer C (2005) Laminar nanofluid flow in microheat-sinks. Int J Heat Mass Transf 48:2652–2661

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sheikholeslami.

Additional information

Technical Editor: Francisco Ricardo Cunha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikholeslami, M. Effect of uniform suction on nanofluid flow and heat transfer over a cylinder. J Braz. Soc. Mech. Sci. Eng. 37, 1623–1633 (2015). https://doi.org/10.1007/s40430-014-0242-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-014-0242-z

Keywords

Navigation