Skip to main content

Robust control-based linear bilateral teleoperation system without force sensor


Among the prevalent methods in linear bilateral teleoperation systems with communication channel time delays is to employ position and velocity signals in the control scheme. Utilizing force signals in such controllers significantly improves performance and reduces tracking error. However, measuring force signals in such cases, is one of the major difficulties. In this paper, a control scheme with human and environment force signals for linear bilateral teleoperation is proposed. In order to eliminate the measurement of forces in the control scheme, a force estimation approach based on disturbance observers is applied. The proposed approach guarantees asymptotic estimation of constant forces, and estimation error would only be bounded for time-varying external forces. To cope with the variations in human and environment force, sliding mode control is implemented. The stability and transparency condition in the teleoperation system with the designed control scheme is derived from the absolute stability concept. The intended control scheme guarantees the stability of the teleoperation system in the presence of time-varying human and environment forces. Experimental results indicate that the proposed control scheme improves position tracking in free motion and in contact with the environment. The force estimation approach also appropriately estimates human and environment forces.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. Preusche C, Ortmaier T, Hirzinger G (2002) Teleoperation concepts in minimal invasive surgery. Control Eng Pract 10:1245–1250

    Article  Google Scholar 

  2. Imaida T, Yokokohji Y, Doi T, Oda M, Yoshikava T (2004) Ground space bilateral teleoperation of ETS-VII robot arm by direct bilateral coupling. IEEE Trans Robot Autom 20:499–511

    Article  Google Scholar 

  3. Lee D, Spong MW (2006) passive bilateral teleoperation with constant time delay. IEEE Trans Rob 22:269–281

    Article  Google Scholar 

  4. Nuno E, Ortega R, Barabanov N, Basanez L (2008) A globally stable PD controller for bilateral teleoperators. IEEE Trans Rob 24:753–758

    Article  Google Scholar 

  5. Hua, C, Yang Y (2011) Transparency performance improvement for bilateral teleoperation with direct force-feedback control. In: IEEE international symposium on haptic audio-visual environments and games, Proceeding, Qinhuangdao, Hebei, pp 62–67

  6. Jafari A, Rezaei SM, Shiry Ghidary S, Zareinejad M, Baghestan K, Dehghan MR (2012) A stable perturbation estimator in force-reflecting passivity-based teleoperation. In: Transactions of the Institute of Measurement and Control, pp 1–10

  7. Cho HC, Park JH (2005) Stable bilateral teleoperation under a time delay using a robust impedance control. Mechatronics 15:611–625

    Article  Google Scholar 

  8. Danesh M, Sheikholeslam F, Keshmiri M (2005) External force disturbance rejection in robotic arms: an adaptive approach. IEICE Trans Fundam e88-A: 10

  9. Chan L, Naghdy F, Stirling D (2013) Extended active observer for force estimation and disturbance rejection of robotic manipulators. Robot Auton Syst 61(12):1277–1287

    Article  Google Scholar 

  10. Ahn HS (2010) Synchronization of teleoperation systems using state and force observer. In: International conference on control, automation and systems, Gyeonggi-do

  11. Daly JM, Wang DWL (2009) Bilateral teleoperation using unknown input observers for force estimation. In: Proceeding of the American control conference, St. Luis, pp 89–95

  12. Daly JM, Wang DWL (2010) Time-delayed bilateral teleoperation with force estimation for n-dof nonlinear robot manipulator. In: The 2010 IEEE/RSJ international conference on intelligent control and systems, Taipei, pp 3911–3918

  13. Chen WH, Ballance DJ, Gawthrop PJ, O’Reilly J (2000) A nonlinear disturbance observer for robotic manipulator. IEEE Trans Ind Electron 47: 932–938

  14. Mohammadi A, Marquez HJ, Tavakoli M (2011) Disturbance observer-based trajectory following control of nonlinear robotic manipulators. In: Proceedings of the 23rd CANCAM, Canada

  15. Lichiardopol S, van de Wouw N, Kostic D, Nijmeijer H (2010) Trajectory tracking control for a tele-operation setup with disturbance estimation and compensation. In: Proceeding of the 49th IEEE conference on decision and control, Hilton Atlanta Hotel, Atlanta, GA, USA, December 15–17, 2010

  16. Mohammadi A, Tavakoli M, Marquez HJ (2011) Disturbance observer-based control of nonlinear haptic teleoperation systems. IET Control Theory and Appl 5(18):2063–2074

    Article  MathSciNet  Google Scholar 

  17. Khalil HK (2002) Nonlinear systems, 3rd ed. Prentice Hall

  18. Lu Z, Goldenberg AA (1995) A robust impedance control and force regulation: theory and experiments. Int J Robot Res 14:225–253

    Article  Google Scholar 

  19. Haykin SS (1970) Active network theory. Addison-Wesley, Reading, MA

  20. Hashtrudi-Zaad K, Salcudean SE (2001) Analysis of Control Architectures for Teleoperation Systems with Impedance/Admittance Master and Slave Manipulators. Int J Robot Res 20:419–445

    Article  Google Scholar 

  21. Cho HC, Park JH, Kim K, Park JO (2001) Sliding-model-based impedance controller for bilateral teleoperation under varying time delay. In: Proceedings of IEEE international conference on robotics and automation, Korea, pp 1025–1030

  22. Lawrence DA (1993) Stability and transparency in bilateral teleoperation. IEEE Trans Robot Autom 9:624–637

    Article  Google Scholar 

  23. Zareinejad M, Rezaei SM, Abdullah A, Shiry Ghidary S (2009) Development of a piezo-actuated micro-teleoperation system for cell manipulation. Int J Med Robot Comput Asist Surg 5:66–76

  24. Colgate J, Brown JM (1994) Factors affecting the Z-width of a haptic display. In: Proceedings of the IEEE international conference on robotics and automation, pp 3205–3210

Download references


The authors would like to acknowledge the University of Malaya for providing the necessary facilities and resources for this research. This research was funded by the University of Malaya Research Grant (UMRG) Program No. RP001C-13AET.

Author information

Authors and Affiliations


Corresponding author

Correspondence to H. Amini.

Additional information

Technical Editor: Glauco A. de P. Caurin.



The hybrid matrix:

$$h_{11} = \frac{{\left( {s + L_{\text{h}} } \right)\left( {(m_{m} s + c_{m} + B_{m} + K_{m} /s) - \frac{{e^{{ - s\left( {T_{1} + T_{2} } \right)\left( {B_{m} + {\raise0.7ex\hbox{${K_{m} }$} \!\mathord{\left/ {\vphantom {{K_{m} } s}}\right.\kern-0pt} \!\lower0.7ex\hbox{$s$}}} \right)\left( {B_{s} + {\raise0.7ex\hbox{${K_{s} }$} \!\mathord{\left/ {\vphantom {{K_{s} } s}}\right.\kern-0pt} \!\lower0.7ex\hbox{$s$}}} \right)}} }}{{m_{s} s + c_{s} + B_{s} + K_{s} /s}}} \right)}}{{L_{\text{h}} (1 - \theta )}}$$
$$h_{12} = \frac{{L_{e} \left( {s + L_{\text{h}} } \right)\left( {B_{m} + {\raise0.7ex\hbox{${K_{m} }$} \!\mathord{\left/ {\vphantom {{K_{m} } s}}\right.\kern-0pt} \!\lower0.7ex\hbox{$s$}}} \right)e^{{ - sT_{2} }} }}{{L_{\text{h}} \left( {s + L_{e} } \right)(m_{s} s + c_{s} + B_{s} + K_{s} /s)}}$$
$$h_{21} = - \frac{{ - \left( {B_{s} + {\raise0.7ex\hbox{${K_{s} }$} \!\mathord{\left/ {\vphantom {{K_{s} } s}}\right.\kern-0pt} \!\lower0.7ex\hbox{$s$}}} \right)e^{{ - sT_{1} }} }}{{\left( {m_{s} s + c_{s} + B_{s} + K_{s} /s} \right)}}$$
$$h_{22} = \frac{{(1 - \theta )L_{\text{e}} }}{{\left( {s + L_{\text{e}} } \right)\left( {m_{s} s + c_{s} + B_{s} + K_{s} /s} \right)}}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amini, H., Dabbagh, V., Rezaei, S.M. et al. Robust control-based linear bilateral teleoperation system without force sensor. J Braz. Soc. Mech. Sci. Eng. 37, 579–587 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Teleoperation systems
  • Time delay
  • Force estimation