Advertisement

In vivo blood velocity measurements with particle image velocimetry in echocardiography using spontaneous contrast

  • Bruno Alvares de Azevedo
  • Luis F. A. Azevedo
  • Rosemery Nunes
  • Antonio C. L. Nóbrega
Technical Paper

Abstract

The present study tested the feasibility of applying the particle image velocimetry technique in echocardiography (Echo-PIV), in humans, using echocardiographic images displaying spontaneous contrast. This technique is based on digital image processing of echocardiographic images acquired with ultrasound contrast agents. The measurement of blood flow velocity within the cardiac chambers and blood vessels is essential for the accurate diagnosis, treatment and prognosis of a variety of cardiovascular diseases. Echo-PIV velocimetry technique allows the calculation of relevant information, such as shear rate and vorticity fields. Indeed, the influence of shear rate on the vascular endothelium is related with aneurysms formation and atherosclerosis disease. The pattern and intensity of the vorticity field in the left ventricle seems to indicate different stages of heart failure. In the present work a novel implementation of the technique was tested, whereby spontaneous echocardiographic contrast provided by the blood was used as flow tracers. The knowledge of the image acquisition frame rate and the displacement of the tracers allow the determination of the desired instantaneous blood flow velocity field. Ten patients were selected from clinical routine of diagnostic investigation of the echocardiographic laboratory of Antônio Pedro University Hospital, from the Fluminense Federal University, Niterói, RJ. The echocardiographic exams were selected among those patients displaying spontaneous contrast classified as medium-moderate, moderate and severe. The presence of spontaneous contrast in the analyzed images allowed the cross-correlation of image pairs and the measurements of instantaneous velocity fields. Shear rate and vorticity fields for the blood flow were then calculated from the measured velocity fields. The analysis of the results proved the feasibility of the utilization of the Echo-PIV in humans, using images with spontaneous contrast. This novel implementation eliminates the risk of side effects associated with the use of intravenous contrast solutions and allows the implementation of Echo-PIV technique with a significant cost reduction.

Keywords

Blood flow Echocardiography Spontaneous contrast Particle image velocimetry 

Notes

Acknowledgments

The authors would like to thank Dr. Arnaldo Rabischoffsky for valuable discussions and technical assistance on echocardiography and Carol Azevedo for designing the artwork.

References

  1. 1.
    Baker DW, Rubenstein SA, Lorch GS (1977) Pulsed Doppler echocardiography—principles and applications. Am J Med 63:69–80CrossRefGoogle Scholar
  2. 2.
    Zhang F, Lanning C, Mazzaro L, Barker AJ, Gates PE, Strain WD, Fulford J, Gosling OE, Shore AC, Bellenger NG, Rech B, Chen J, Shandas R (2011) In vitro and preliminary in vivo validation of echo particle image velocimetry in carotid vascular imaging. Ultrasound Med Biol 37:450–464CrossRefGoogle Scholar
  3. 3.
    Nam KH, Yeom E, Ha H, Lee SJ (2010) Velocity field measurements of valvular blood flow in a human superficial vein using high-frequency ultrasound speckle image velocimetry. Int J Cardiovasc Imaging. doi: 10.1007/s10554-010-9778-x Google Scholar
  4. 4.
    Hong GR, Pedrizzetti G, Tonti G, Li P, Wei Z, Kim JK, Baweja A, Liu S, Chung N, Houle H, Narula J, Vannan MA (2008) Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC Cardiovasc Imaging 1:705717Google Scholar
  5. 5.
    Kheradvar A, Houle H, Pedrizzetti G, Tonti G, Belcik T, Ashraf M, Lindner JR, Gharib M, Sahn D (2010) Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J Am Soc Echocardiogr 23:8694CrossRefGoogle Scholar
  6. 6.
    Adrian RJ (1991) Particle-image technique for experimental fluid mechanics. Annu Rev Fluid Mech 23:261304CrossRefGoogle Scholar
  7. 7.
    Raffel M, Willert CE, Kompenhans J (1998) Particle image velocimetry: a practical guide. Springer-Verlag, Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  8. 8.
    Poelma C, Van der Heiden K, Hierck BP, Poelmann RE, Westerweel J (2010) Measurements of the wall shear stress distribution in the outflow tract of an embryonic chicken heart. J R Soc Interface 7(42):91–103. doi: 10.1098/rsif.2009.0063
  9. 9.
    Crapper M, Bruce T, Gouble C (2000) Flow field visualization of sediment-laden flow using ultrasonic imaging. Dyn Atmos Oceans 31:233–245CrossRefGoogle Scholar
  10. 10.
    Liu L, Zheng H, Williams L, Zhang F, Wang R, Hertzberg J, Shandas R (2008) Development of a custom-designed echo particle image velocimetry system for multi-component hemodynamic measurements: system characterization and initial experimental results. Phys Med Biol 53:1397–1412CrossRefGoogle Scholar
  11. 11.
    Kim HB, Hertzberg JR, Shandas R (2004) Development and validation of echo PIV. Exp Fluids 36:455–462CrossRefGoogle Scholar
  12. 12.
    Pedrizzetti G, Domenichini F, Tonti G (2010) On the left ventricular vortex reversal after mitral valve replacement. Ann Biomed Eng 38:769773CrossRefGoogle Scholar
  13. 13.
    Sengupta PP, Khandheria BK, Korinek J, Jahangir A, Yoshifuku S, Milosevic I, Belohlavek M (2007) Left ventricular isovolumic flow sequence during sinus and paced rhythms: new insights from use of high-resolution Doppler and ultrasonic digital particle imaging velocimetry. J Am Coll Cardiol 49:899–908CrossRefGoogle Scholar
  14. 14.
    Friedman MH, Hutchins GM, Bargeron CB, Deters OJ, Mark FF (1981) Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 39:425436CrossRefGoogle Scholar
  15. 15.
    Caro CG, Fitz-Gerald JM, Schroter RC (1969) Arterial wall shear and distribution of early atheroma in man. Nature 223:1159–1160CrossRefGoogle Scholar
  16. 16.
    Burleson AC, Turitto VT (1996) Identification of quantifiable hemodynamic factors in the assessment of cerebral aneurysm behavior. On behalf of the Subcommittee on Biorheology of the Scientific and Standardization Committee of the ISTH. Thromb Haemost 76:118123Google Scholar
  17. 17.
    Holscher T, Rodriguez-Rodriguez J, Wilkening WG, Lasheras JC, Sang HU (2006) Intraoperative brain ultrasound: a new approach to study flow dynamics in intracranial aneurysms. Ultrasound Med Biol 32:1307–1313CrossRefGoogle Scholar
  18. 18.
    Schuchman H, Feigenbaum H, Dillon JC, Chang S (1975) Intracavitary echoes in patients with mitral prosthetic valves. J Clin Ultrasound 3:107110CrossRefGoogle Scholar
  19. 19.
    Castello R, Pearson AC, Fagan L, Labovitz AJ (1990) Spontaneous echocardiographic contrast in the descending aorta. Am Heart J 120:915919CrossRefGoogle Scholar
  20. 20.
    Castello R, Pearson AC, Labovitz AJ (1990) Prevalence and clinical implications of atrial spontaneous contrast in patients undergoing transesophageal echocardiography. Am J Cardiol 65:11491153CrossRefGoogle Scholar
  21. 21.
    Black IW, Hopkins AP, Lee LC, Walsh WF (1991) Left atrial spontaneous echo contrast: a clinical and echocardiographic analysis. J Am Coll Cardiol 18:398404CrossRefGoogle Scholar
  22. 22.
    Merino A, Hauptman P, Badimon L, Badimon JJ, Cohen M, Fuster V, Goldman M (1992) Echocardiographic “smoke” is produced by interaction of erythrocytes and plasma proteins modulated by shear forces. J Am Coll Cardiol 20:16611668CrossRefGoogle Scholar
  23. 23.
    Black IW, Chesterman CN, Hopkins AP, Lee LC, Chong BH, Walsh WF (1993) Hematological correlates of left atrial spontaneous echo contrast and thromboembolism in nonvalvular atrial fibrillation. J Am Coll Cardiol 21:451457CrossRefGoogle Scholar
  24. 24.
    Erbel R, Stern H, Ehrenthal W, Schreiner G, Treese N, Kramer G, Thelen M, Schweizer P, Meyer J (1986) Detection of spontaneous echocardiographic contrast within the left atrium by transesophageal echocardiography: spontaneous echocardiographic contrast. Clin Cardiol 9:245252CrossRefGoogle Scholar
  25. 25.
    Fatkin D, Kelly RP, Feneley MP (1994) Relations between left atrial appendage blood velocity, spontaneous echocardiographic contrast and thromboembolic risk in vivo. J Am Coll Cardiol 23:961969Google Scholar
  26. 26.
    Fatkin D, Loupas T, Jacobs N, Feneley MP (1995) Quantification of blood echogenicity: evaluation of a semiquantitative method of grading spontaneous echo contrast. Ultrasound Med Biol 21:1191–1198CrossRefGoogle Scholar
  27. 27.
    Poelma C, Mari JM, Foin N, Tang MX, Krams R, Caro CG, Weinberg PD, Westerweel J (2011) 3D flow reconstruction using ultrasound PIV. Exp Fluids. doi: 10.1007/s00348-009-0781-8 Google Scholar
  28. 28.
    Gonzalez RC, Woods RE (1992) Digital image processing. Addison Wesley Longman, MassachusettsGoogle Scholar
  29. 29.
    Westerweel J (1994) Efficient detection of spurious vectors in particle image velocimetry data. Exp Fluids 16:236247Google Scholar
  30. 30.
    Zananiri FV, Jackson PC, Halliwell M, Harris RA, Hayward JK, Davies ER, Wells PN (1993) A comparative-study of velocity-measurements in major blood-vessels using magnetic-resonance-imaging and Doppler ultrasound. Br J Radiol 66:1128–1133CrossRefGoogle Scholar
  31. 31.
    Frydrychowicz A, Harloff A, Jung B, Zaitsev M, Weigang E, Bley TA, Langer M, Hennig J, Markl M (2007) Time-resolved, 3-dimensional magnetic resonance flow analysis at 3 T: visualization of normal and pathological aortic vascular hemodynamics. J Comput Assist Tomogr 31:9–15CrossRefGoogle Scholar
  32. 32.
    Feinstein SB, Cheirif J, Ten Cate FJ, Silverman PR, Heidenreich PA, Dick C, Desir RM, Armstrong WF, Quinones MA, Shah PM (1990) Safety and efficacy of a new transpulmonary ultrasound contrast agent: initial multicenter clinical results. J Am Coll Cardiol 16:316–324CrossRefGoogle Scholar
  33. 33.
    Kitzman DW, Goldman ME, Gillam LD, Cohen JL, Aurigemma GP, Gottdiener JS (2000) Efficacy and safety of the novel ultrasound contrast agent perflutren (definity) in patients with suboptimal baseline left ventricular echocardiographic images. Am J Cardiol 86:669674CrossRefGoogle Scholar
  34. 34.
    Henri P, Tranquart F (2000) B-flow ultrasonographic imaging of circulating blood. J Radiol 81:465467Google Scholar
  35. 35.
    Weskott HP (2000) B-flow—a new method for detecting blood flow. Ultraschall Med 21:59–65CrossRefGoogle Scholar
  36. 36.
    Bucek RA, Reiter M, Koppensteiner I, Ahmadi R, Minar E, Lammer J (2002) B-flow evaluation of carotid arterial stenosis: initial experience. Radiology 225:295–299CrossRefGoogle Scholar
  37. 37.
    Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, New YorkGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2014

Authors and Affiliations

  • Bruno Alvares de Azevedo
    • 1
    • 2
  • Luis F. A. Azevedo
    • 1
  • Rosemery Nunes
    • 2
  • Antonio C. L. Nóbrega
    • 2
  1. 1.Department of Mechanical EngineeringPontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Department of CardiologyUniversidade Federal FluminenseNiteróiBrazil

Personalised recommendations