Skip to main content

Advertisement

Log in

Development of a new driller system to prevent the osteonecrosis in orthopedic surgery applications

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In bone drilling process during the surgical operations, heating increases extremely due to undesired temperature rise that sometimes seriously damages the bones and soft tissues. The overheating is usually recognized as the temperature exceeds 47 °C known as a critical limit above which the drilling causes osteonecrosis. In this study, a new driller system is developed to prevent the overheating in orthopedic surgical applications. The driller system has a closed-circuit cooling system to reduce the undesired temperature rise during the bone drilling process. The driller system is designed and manufactured as a prototype and tested experimentally in vitro by drilling fresh bovine bones using different processing parameters. A drill bit with a diameter of 10 mm is designed with a closed-circuit cooling channel internally and used in the bone drilling tests. In the drilling tests, the temperatures levels of the bones are measured using both non-contact and thermocouple sensors. Based on the results measured in the experiments, the developed driller system provides a valuable temperature reduction during the bone drilling process. Therefore, the bone temperature reduction was measured range of 20–25 % for lower spindle speeds (rpm) that is usually preferred by surgeons. The temperature levels measured from the drilling tests of the developed driller system having a cooling system are compared with the use of regular bone drilling process without cooling. A valuable temperature reduction is obtained using the driller system during the bone drilling tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hillery MT, Shuaib I (1999) Temperature effects in the drilling of human and bovine bone. J Mater Process Technol 92–93:302–308. doi:10.1016/S0924-0136(99)00155-7

    Article  Google Scholar 

  2. Eriksson AR, Albrektsson T, Albrektsson B (1984) Heat caused by drilling cortical bone. Temperature measured in vivo in patients and animals. Acta Orthop Scand 55:629–631

    Article  Google Scholar 

  3. Augustin G, Davila S, Mihoci K, Udiljak T, Vedrina D, Antabak A (2008) Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg 128(1):71–77. doi:10.1007/s00402-007-0427-3

    Article  Google Scholar 

  4. Sezek S, Aksakal B, Karaca F (2011) Ortopedik operasyonlardaki kemik delme işlemlerinde sıcaklık dağılım analizleri. In: 6th International Advanced Technologies Symposium (IATS’11), pp 276–281

  5. Toews AR, Bailey JV, Townsend HGG, Barber SM (1999) Effect of feed rate and drill speed on temperatures in equine cortical bone. Am J Vet Res 60:942–944

    Google Scholar 

  6. Martinez H, Davarpanah M, Missika P, Celletti R, Lazzara R (2001) Optimal implant stabilization in low density bone. Clin Oral Implant Res 12(5):423–432. doi:10.1034/j.1600-0501.2001.120501.x

    Article  Google Scholar 

  7. Chen H, Sun J, Hoemann CD, Lascau-Coman V, Ouyang W, McKee MD, Shive MS, Buschmann MD (2009) Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res 27(11):1432–1438. doi:10.1002/jor.20905

    Article  Google Scholar 

  8. Augustin G, Zigman T, Davila S, Udilljak T, Staroveski T, Brezak D, Babic S (2012) Cortical bone drilling and thermal osteonecrosis. Clin Biomech 27(4):313–325. doi:10.1016/j.clinbiomech.2011.10.010

    Article  Google Scholar 

  9. Jacobs CH, Pope MH, Berry JT, Hoaglund F (1974) A study of the bone machining process—Orthogonal cutting. J Biomech 7(2):131–136. doi:10.1016/0021-9290(74)90051-7

    Article  Google Scholar 

  10. Farnworth GH, Burton JA (1974) Optimization of drill geometry for orthopaedic surgery. In: 14th International machine tool design and research conference, Manchester, England, 12–14 September 1974, pp 227–233

  11. Saha S, Pal S, Albright J (1982) Surgical drilling: design and performance of an improved drill. J Biomech Eng 104(3):245–252

    Article  Google Scholar 

  12. Matthews LS, Green CA, Goldstein SA (1984) The thermal effects of skeletal fixation-pin insertion in bone. J Bone Jt Surg 66(7):1077–1083

    Google Scholar 

  13. Abouzgia MB, James DF (1995) Measurements of shaft speed while drilling through bone. J Oral Maxillofac Surg 53(11):1308–1315. doi:10.1016/0278-2391(95)90590-1

    Article  Google Scholar 

  14. Anitua E, Carda C, Andia I (2007) A novel drilling procedure and subsequent bone autograft preparation: a technical note. Int J Oral Maxillofac Implants 22(1):138–145

    Google Scholar 

  15. Abukhshim NA, Mativenga PT, Sheikh MA (2006) Heat generation and temperature prediction in metal cutting: a review and implications for high speed machining. Int J Mach Tools Manuf 46(7–8):782–800. doi:10.1016/j.ijmachtools.2005.07.024

    Article  Google Scholar 

  16. Mukherjee I, Ray PK (2006) A review of optimization techniques in metal cutting processes. Comp Ind Eng 50(1–2):15–34. doi:10.1016/j.cie.2005.10.001

    Article  Google Scholar 

  17. Ueda T, Nozaki R, Hosokawa A (2007) Temperature measurement of cutting edge in drilling -effect of oil mist. CIRP Ann Manuf Technol 56(1):93–96. doi:10.1016/j.cirp.2007.05.024

    Article  Google Scholar 

  18. Hamade RF, Seif CY, Ismail F (2006) Extracting cutting force coefficients from drilling experiments. Int J Mach Tools Manuf 46(3–4):387–396. doi:10.1016/j.ijmachtools.2005.05.016

    Article  Google Scholar 

  19. Allotta B, Giacalone G, Rinaldi L (1997) A hand-held drilling tool for orthopedic surgery. Mechatron IEEE/ASME Trans 2(4):218–229. doi:10.1109/3516.653046

    Article  Google Scholar 

  20. Hsu Y-L, Lee S-T, Lin H-W (2001) A modular mechatronic system for automatic bone drilling. Biomed Eng Appl Basis Commun 13(04):168–174. doi:10.4015/S1016237201000212

    Article  Google Scholar 

  21. Sugita N, Nakano T, Nakajima Y, Fujiwara K, Abe N, Ozaki T, Suzuki M, Mitsuishi M (2009) Dynamic controlled milling process for bone machining. J Mater Process Technol 209(17):5777–5784. doi:10.1016/j.jmatprotec.2009.06.008

    Article  Google Scholar 

  22. Mitsuishi M, Warisawa S, Sugita N (2004) Determination of the machining characteristics of a biomaterial using a machine tool designed for total knee arthroplasty. CIRP Ann Manuf Technol 53(1):107–112. doi:10.1016/S0007-8506(07)60656-8

    Article  Google Scholar 

  23. Bachus KN, Rondina MT, Hutchinson DT (2000) The effects of drilling force on cortical temperatures and their duration: an in vitro study. Med Eng Phys 22(10):685–691. doi:10.1016/S1350-4533(01)00016-9

    Article  Google Scholar 

  24. Matthews LS, Hirsch C (1972) Temperatures measured in human cortical bone when drilling. J Bone Jt Surg 54(2):297–308

    Google Scholar 

  25. Ueda T, Wada A, Hasegawa K-I, Endo Y, Takikawa Y, Hasegawa T, Hara T (2010) The effect of drill design elements on drilling characteristics when drilling bone. J Biomech Sci Eng 5(4):399–407

    Article  Google Scholar 

  26. Mitsuishi M, Warisawa S, Sugita N, Suzuki M, Moriya H, Hashizume H, Fujiwara K, Abe N, Inoue H, Kuramoto K, Inoue T, Nakashima Y, Tanimoto K (2005) A study of bone micro-cutting characteristics using a newly developed advanced bone cutting machine tool for total knee arthroplasty. CIRP Ann Manuf Technol 54(1):41–46. doi:10.1016/S0007-8506(07)60045-6

    Article  Google Scholar 

  27. Harder S, Egert C, Wenz HJ, Jochens A, Kern M (2013) Influence of the drill material and method of cooling on the development of intrabony temperature during preparation of the site of an implant. Br J Oral Maxillofac Surg 51(1):74–78. doi:10.1016/j.bjoms.2012.02.003

    Article  Google Scholar 

  28. Augustin G, Davila S, Udilljak T, Staroveski T, Brezak D, Babic S (2012) Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill. Int Orthop (SICOT) 36(7):1449–1456. doi:10.1007/s00264-012-1491-z

    Article  Google Scholar 

  29. Brand S, Klotz J, Petri M, Ettinger M, Hassel T, Krettek C, Goesling T, Bach F-W (2013) Temperature control with internally applied cooling in solid material drilling: an experimental, biomechanical study. Int Orthop (SICOT) 37(7):1355–1361. doi:10.1007/s00264-013-1850-4

  30. Yuan-Kun T, Hsun-Heng T, Li-Wen C, Ching-Chieh H, Yung-Chuan C, Li-Chiang L (2008) Finite element simulation of drill bit and bone thermal contact during drilling. In: Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference on, 16–18 May 2008, pp 1268–1271. doi:10.1109/icbbe.2008.645

  31. Yuan-Kun T, You-Yao H, Yung-Chuan C (2009) Finite element modeling of kirschner pin and bone thermal contact during drilling. Life Sci J 6(4):23–27

    Google Scholar 

  32. Yuan-Kun T, Wei-Hua L, Li-Wen C, Ji-Sih C, Yung-Chuan C (2011) The effects of drilling parameters on bone temperatures: a finite element simulation. In: Bioinformatics and Biomedical Engineering, (iCBBE) 2011 5th International Conference on, 10–12 May 2011, pp 1–4. doi:10.1109/icbbe.2011.5780448

  33. Sezek S, Aksakal B, Karaca F (2012) Influence of drill parameters on bone temperature and necrosis: a FEM modelling and in vitro experiments. Comput Mater Sci 60:13–18. doi:10.1016/j.commatsci.2012.03.012

    Article  Google Scholar 

  34. Alam K, Mitrofanov AV, Silberschmidt VV (2009) Finite element analysis of forces of plane cutting of cortical bone. Comput Mater Sci 46(3):738–743. doi:10.1016/j.commatsci.2009.04.035

    Article  Google Scholar 

  35. Paszenda Z, Basiaga M (2009) Fem analysis of drills used in bone surgery. Arch Mater Sci Eng 36(2):103–109

    Google Scholar 

  36. Basiaga M, Paszenda Z, Szewczenko J, Kaczmarek M (2011) Numerical and experimental analyses of drills used in osteosynthesis. Acta Bioeng Biomech Wroc Univ Technol 13(4):29–36

    Google Scholar 

  37. Basiaga M, Paszenda Z, Szewczenko J (2010) Biomechanical behaviour of surgical drills in simulated conditions of drilling in a bone. In: Pitka E, Kawa J (eds) Information technologies in biomedicine, vol 69. advances in intelligent and soft computing. Springer, Berlin, pp 473–481. doi:10.1007/978-3-642-13105-9_48

    Google Scholar 

  38. Alam K, Mitrofanov AV, Silberschmidt VV (2010) Thermal analysis of orthogonal cutting of cortical bone using finite element simulations. Int J Exp Comput Biomech 1(3):236–251

    Article  Google Scholar 

  39. Albertini M, Herrero-Climent M, Lázaro P, Rios JV, Gil FJ (2012) Comparative study on AISI 440 and AISI 420B stainless steel for dental drill performance. Mater Lett 79:163–165. doi:10.1016/j.matlet.2012.04.006

    Article  Google Scholar 

  40. www.concept-laser.de

  41. Balaji AK, Mohan VS (2002) An effective cutting tool thermal conductivity’ based model for tool–chip contact in machining with multi-layer coated cutting tools. Mach Sci Technol 6(3):415–436. doi:10.1081/mst-120016254

    Article  Google Scholar 

  42. Özel T, Altan T (2000) Determination of workpiece flow stress and friction at the chip–tool contact for high-speed cutting. Int J Mach Tools Manuf 40(1):133–152. doi:10.1016/S0890-6955(99)00051-6

    Article  Google Scholar 

  43. Ucun İ, Aslantas K (2011) Numerical simulation of orthogonal machining process using multilayer and single-layer coated tools. Int J Adv Manuf Technol 54(9–12):899–910. doi:10.1007/s00170-010-3012-9

    Article  Google Scholar 

  44. Oliveira N, Alaejos-Algarra F, Mareque-Bueno J, Ferrés-Padró E, Hernández-Alfaro F (2012) Thermal changes and drill wear in bovine bone during implant site preparation. A comparative in vitro study: twisted stainless steel and ceramic drills. Clin Oral Implant Res 23(8):963–969. doi:10.1111/j.1600-0501.2011.02248.x

    Article  Google Scholar 

  45. Piconi C, Maccauro G (1999) Zirconia as a ceramic biomaterial. Biomaterials 20(1):1–25. doi:10.1016/S0142-9612(98)00010-6

    Article  Google Scholar 

  46. Bayerlein T, Proff P, Richter G, Dietze S, Fanghänel J, Gedrange T (2006) The use of ceramic drills on a zirconium oxide basis in bone preparation. Folia Morphol (Warsz) 65(1):72–74

    Google Scholar 

  47. Scarano A, Carinci F, Quaranta A, Di Iorio D, Assenza B, Piattelli A (2007) Effects of bur wear during implant site preparation: an in vitro study. Int J Immunopathol Pharmacol 20(1 Suppl 1):23–26

    Google Scholar 

  48. http://www.barlokmetal.com/index.php/joomla-portal/titanyum-kaplama

  49. Sedlin EDHC (1966) Factors affecting the determination of the physical properties of femoral cortical bone. Acta Orthop Scand 37(1):29–48

    Article  Google Scholar 

  50. Lee J, Ozdoganlar OB, Rabin Y (2012) An experimental investigation on thermal exposure during bone drilling. Med Eng Phys 34(10):1510–1520. doi:10.1016/j.medengphy.2012.03.002

    Article  Google Scholar 

  51. Laurito D, Lamazza L, Garreffa G, De Biase A (2010) An alternative method to record rising temperatures during dental implant site preparation: a preliminary study using bovine bone. Ann Ist Super Sanita 46(4):405–410

    Google Scholar 

  52. Natali C, Ingle P, Dowell J (1996) Orthopaedic bone drills—can they be improved? Temperature changes near the drilling face. J Bone Jt Surg 78-B(3):357–362 British Volume

    Google Scholar 

  53. Ohashi H, Therin M, Meunier A, Christel P (1994) The effect of drilling parameters on bone. J Mater Sci Mater Med 5(4):237–241. doi:10.1007/bf00121095

    Article  Google Scholar 

  54. Nam O, Yu W, Choi MY, Kyung HM (2006) Monitoring of bone temperature during osseous preparation for orthodontic micro-screw implants: effect of motor speed and pressure. Key Eng Mater 321–323:1044–1047

    Article  Google Scholar 

  55. Sharawy M, Misch CE, Weller N, Tehemar S (2002) Heat generation during implant drilling: the significance of motor speed. J Oral Maxillofac Surg 60(10):1160–1169

    Article  Google Scholar 

  56. Stabler GV (1951) The fundamental geometry of cutting tools. Proc Inst Mech Eng 165:14–26

    Article  Google Scholar 

  57. Shamoto E, Altintas Y (1999) Prediction of shear angle in oblique cutting with maximum shear stress and minimum energy principles. J Manuf Sci Eng 121(3):399–407. doi:10.1115/1.2832695

    Article  Google Scholar 

  58. Augustin G, Davila S, Udiljak T, Vedrina D, Bagatin D (2009) Determination of spatial distribution of increase in bone temperature during drilling by infrared thermography: preliminary report. Arch Orthop Trauma Surg 129(5):703–709. doi:10.1007/s00402-008-0630-x

    Article  Google Scholar 

  59. Mellinger JC, Ozdoganlar OB, Devor RE, Kapoor SG (2002) Modeling chip-evacuation forces and prediction of chip-clogging in drilling. J Manuf Sci Eng 124(3):605–614

    Article  Google Scholar 

  60. Costich ER, Youngblood PJ, Walden JM (1964) A study of the effects of high-speed rotary instruments on bone repair in dogs. Oral Surg Oral Med Oral Pathol 17:563–571

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Scientific Research Projects Unit of Kocaeli University under the project number of 2012/44. The authors are also applied to Turkish Patent Institute for the patent of drill bit and drill chuck designs with the application numbers of “2012/14286” and “2012/14287” in 07 December 2012.

Conflict of interest

We certify that there is no conflict of interest with any financial organization regarding the materials discussed in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadir Gok.

Additional information

Technical Editor: Marcos Pinotti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gok, K., Buluc, L., Muezzinoglu, U.S. et al. Development of a new driller system to prevent the osteonecrosis in orthopedic surgery applications. J Braz. Soc. Mech. Sci. Eng. 37, 549–558 (2015). https://doi.org/10.1007/s40430-014-0186-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-014-0186-3

Keywords

Navigation