Skip to main content
Log in

Nonlinear dynamic analysis of beams with layered cross sections under moving masses

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper considers the nonlinear dynamic analysis of moving masses applied on beams with layered cross sections. This mechanical system is often used in passenger transportation systems, such as high-velocity trains and magnetic levitation transport vehicles. The structural systems are modeled numerically with the aid of a formulation based on the Finite Elements Method. The main objective of this paper was to present an original numerical approach for a mass-beam system using the concept of positional geometric nonlinearity, which uses nodal positions rather than nodal displacements to describe the finite elements kinematics. By using this methodology, analyses can be performed for moving masses traveling with constant or variable velocity in dimensionless or physical problems. For the analyzed problems, sets of results are presented for the mechanical behavior analyses, such as the moving mass trajectories along the mass-beam coupled system. Moreover, a comparative study is performed on beams with rectangular and rail cross sections. After the passage of the moving masses, the elastoplastic rectangular cross-sectional beam presents a higher stiffness than the elastoplastic rail cross-sectional beam, as a result of the double plasticity that occurs at the extreme surfaces. Another original numerical example presents a beam made of two different materials under the action of a moving mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area

ds :

Longitudinal fiber length related to height positions

E :

Young’s modulus

E E :

External energy of the moving mass

\(\varvec{g}\left( {X_{0} } \right)\) :

Vector of residues

K :

Kinetic energy contribution of the mass-beam in the energy functional

m :

Moving mass value

M :

Mass matrix

P :

Prescribed force due to the mass

\(\varvec{Q}_{t}\) :

Vector of the variables from the previous time step

\(\varvec{R}_{t}\) :

Vector of the variables from the previous time step

t :

Previous time step

t + ∆t :

Current time step

\(U_{\text{T}}\) :

Total strain energy

X :

Vector of nodal positions

V :

Volume

z :

Height position

γ, β :

Newmark time integration parameters

\(\eta , \xi\) :

Non-dimensional parameters used to integrate finite elements

\(\rho\) :

Mass density

\(\delta \left( {\varvec{X} - \varvec{X}_{m} } \right)\) :

Dirac delta operator for moving mass

t :

Time integration interval

\(\nabla \varvec{g}\left( {X_{0} } \right)\) :

Hessian matrix

ε :

Engineering strain measure

\(\varepsilon_{\text{P}}\) :

Plastic strain

0:

Initial or estimated time step

References

  1. Stokes GG (1849) Discussion of a differential equation relating to the breaking of railway bridges. Trans Cambridge Philos Soc 8:707–735

    Google Scholar 

  2. Cifuentes AO (1989) Dynamic response of a beam excited by a moving mass. Finite Elem Anal Des 5:237–246. doi:10.1016/0168-874X(89)90046-2

    Article  MATH  Google Scholar 

  3. Xu X, Xu W, Genin J (1997) A non-linear moving mass problem. J Sound Vib 204:495–504. doi:10.1006/jsvi.1997.0962

    Article  Google Scholar 

  4. Lee U (1998) Separation between the flexible structure and the moving mass sliding on it. J Sound Vib 209:867–877. doi:10.1006/jsvi.1997.1287

    Article  Google Scholar 

  5. Wu J (2005) Dynamics analysis of an inclined beam due to moving loads. J Sound Vib 288:107–131. doi:10.1016/j.jsv.2004.12.020

    Article  MATH  Google Scholar 

  6. Al-Qassab M, Nair S, O’Leary J (2003) Dynamics of an elastic cable carrying a moving mass particle. Nonlinear Dyn 33:11–32. doi:10.1023/A:1025558825934

    Article  MATH  Google Scholar 

  7. Bajer CI, Dyniewicz B (2008) Space-time approach to numerical analysis of a string with a moving mass. Int J Numer Methods Eng 76:1528–1543. doi:10.1002/nme.2372

    Article  MATH  MathSciNet  Google Scholar 

  8. Wang L, Rega G (2010) Modelling and transient planar dynamics of suspended cables with moving mass. Int J Solids Struct 47:2733–2744. doi:10.1016/j.ijsolstr.2010.06.002

    Article  MATH  Google Scholar 

  9. Greco M, Coda HB (2006) Positional FEM formulation for flexible multi-body dynamic analysis. J Sound Vib 290:1141–1174. doi:10.1016/j.jsv.2005.05.018

    Article  Google Scholar 

  10. Lanczos C (1970) The variational principles of mechanics, 4th edn. Dover Publications, New York

    MATH  Google Scholar 

  11. Greco M, Gesualdo FAR, Venturini WS, Coda HB (2006) Nonlinear positional formulation for space truss analysis. Finite Elem Anal Des 42:1079–1086. doi:10.1016/j.finel.2006.04.007

    Article  MathSciNet  Google Scholar 

  12. Lin YH (1994) Vibration analysis of Timoshenko beams traversed by moving loads. J Mar Sci Technol 2:25–35

    Google Scholar 

  13. Esmailzadeh E, Ghorashi M (1997) Vibration analysis of a Timoshenko beam subjected to a travelling mass. J Sound Vib 199:615–628. doi:10.1016/S0022-460X(96)99992-7

    Article  Google Scholar 

  14. Graff KF (1991) Wave motions in elastic solids. Dover Publications, New York

    Google Scholar 

  15. Argyris J, Mlejnek HP (1991) Dynamics of structures: texts on computational mechanics, vol 5. North-Holland, Amsterdam

    MATH  Google Scholar 

  16. Greco M, Ferreira IP, Barros FB (2013) A classical time integration method applied for solution of nonlinear equations of a double layer tensegrity. J Braz Soc Mech Sci Eng 35:41–50. doi:10.1007/s40430-013-0009-y

    Article  Google Scholar 

  17. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  18. Ye Z, Chen H (2009) Vibration analysis of a simply supported beam under moving mass based on moving finite element method. Front Mech Eng China 4:397–400. doi:10.1007/s11465-009-0044-7

    Article  Google Scholar 

  19. Krawczyk P, Rebora B (2007) Large deflections of laminated beams with interlayer slips—part 2: finite element development. Eng Comput 24:33–51. doi:10.1108/02644400710718565

    Article  MATH  Google Scholar 

  20. Battini J-M, Nguyen Q-H, Hjiaj M (2009) Non-linear finite element analysis of composite beams with interlayer slips. Comput Struct 87:904–912. doi:10.1016/j.compstruc.2009.04.002

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge CNPq (National Council of Scientific and Technological Development) and FAPEMIG (Minas Gerais State Research Foundation) for their financial support, under Grant Numbers 301487/2010-3, 304275/2013-1 and TEC-PPM-00026-13. The authors would also like to acknowledge the grammar revision service provided by the Pró-Reitoria de Pesquisa da Universidade Federal de Minas Gerais (UFMG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Greco.

Additional information

Technical Editor: Marcelo A. Savi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, F.M., Greco, M. Nonlinear dynamic analysis of beams with layered cross sections under moving masses. J Braz. Soc. Mech. Sci. Eng. 37, 451–462 (2015). https://doi.org/10.1007/s40430-014-0184-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-014-0184-5

Keywords

Navigation