Skip to main content
Log in

Non-Newtonian nanofluid free convection flow subject to mixed thermal boundary conditions about a vertical cone

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

A similarity analysis for natural convection past a vertical cone in Darcy porous medium saturated with a non-Newtonian nanofluid is considered assuming that the cone is subjected to a mixed thermal boundary condition. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The generalized governing equations derived in this work can be applied to the cases of prescribed surface temperature and prescribed heat flux. The effects of the power-law viscosity index and the similarity exponent on the heat transfer characteristics under mixed thermal boundary conditions have been studied. Moreover, numerical solutions of the boundary layer equations are obtained for several values of the nanofluid parameters (Brownian motion number N b, thermophoresis parameter N t, buoyancy ratio number N r). A comparison with previously published work on a special case of the general problem was performed and the results were found to be in excellent agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

C :

Nanoparticle volume fraction

D :

Brownian diffusion coefficient

\( \hat{D} \) :

Thermophoretic diffusion coefficient

f :

Dimensionless stream function

g :

Acceleration due to gravity

k :

Thermal conductivity

K :

Modified permeability of the porous medium

Le :

Lewis number

m :

Similarity exponent

n :

Power-law index

N b :

The Brownian motion parameter

N r :

The buoyancy ratio

N t :

The thermophoresis parameter

Nu :

Local Nusselt number

q w :

Heat transfer rate

q m :

Mass transfer rate

r :

Local radius of the cone

Ra :

Rayleigh number

S :

Dimensionless nanoparticle volume fraction

Sh :

Local Sherwood number

T :

Temperature of the fluid

(u, v):

Components of velocity of the fluid

(x, y):

Coordinate axes

α :

Thermal diffusivity of porous medium

β :

Volumetric coefficient of thermal expansion of fluid

\( \mu^{{ \star }} \) :

Viscosity of the fluid

τ :

The ratio between the effective heat capacity of the nanoparticle material and heat capacity of the fluid

ρ f :

Fluid density

ρ p :

Nanoparticle mass density

(ρc)f :

Heat capacity of the fluid

(ρc)p :

Effective heat capacity of nanoparticle material

Ω:

Half angle of the cone

λ :

Mixed thermal boundary condition parameter

ψ :

Stream function

θ :

Dimensionless temperature

η :

Similarity parameter

w :

Conditions at the wall

∞:

Conditions in the free stream

References

  1. Nakayama A, Koyama H (1991) Buoyancy-induced flow of non-Newtonian fluids over a non-isothermal body of arbitrary shape in a fluid-saturated porous medium. Appl Sci Res 48:55–70

    Article  MATH  Google Scholar 

  2. Mahdy A (2010) Soret and Dufour effect on double diffusion mixed convection from a vertical surface in a porous medium saturated with a non-Newtonian fluid. J Non-Newtonian fluid Mech 165:568–575

    Article  MATH  Google Scholar 

  3. Yih KA (1998) Uniform lateral mass flux effect on natural convection of non-Newtonian fluids over a cone in porous media. Int Commun Heat Mass Transfer 25(7):959–968

    Article  Google Scholar 

  4. Ibrahim FS, Abdel-Gaid SM, Gorla RSR (2000) Non-Darcy mixed convection flow along a vertical plate embedded in a non-Newtonian fluid saturated porous medium with surface mass transfer. Int J Numer Meth Heat Fluid Flow 10:397–408

    Article  MATH  Google Scholar 

  5. Mehta KN, Rao KN (1994) Buoyancy-induced flow of non-Newtonian fluids over a non-isothermal horizontal plate embedded in a porous medium. Int J Eng Sci 32:521–525

    Article  MATH  Google Scholar 

  6. Kairi RR, Murthy PVSN (2011) Effect of viscous dissipation on natural convection heat and mass transfer from vertical cone in a non-Newtonian fluid saturated non-Darcy porous medium. Appl Math Comput 217:8100–8114

    Article  MathSciNet  MATH  Google Scholar 

  7. Kim GB, Hyun JM (2004) Buoyant convection of power-law fluid in an enclosure filled with heat-generating porous media. Numer Heat Transf Part A Appl 45:569–582

    Article  Google Scholar 

  8. Chen HT, Chen CK (1988) Free convection of non-Newtonian fluids along a vertical plate embedded in a porous medium. Trans ASME J Heat Transf 110:257–260

    Article  Google Scholar 

  9. Malarvizhi G, Ramanaiah G (1991) Similarity analysis of axisymmetric free convection on a horizontal infinite plate subjected to a mixed thermal boundary condition. Acta Mech 90:53–60

    Article  MATH  Google Scholar 

  10. Nazar R, Arifin NM, Pop I (2006) Free convection boundary layer flow over vertical and horizontal flat plates embedded in a porous medium under mixed thermal boundary conditions. Int Commun Heat Mass Transf 3:87–93

    Article  Google Scholar 

  11. Cheng CY (2009) Natural convection heat transfer of non-Newtonian fluids in porous media from a vertical cone under mixed thermal boundary conditions. Int Commun Heat Mass Transf 36:693–697

    Article  Google Scholar 

  12. Ece MC (2005) Free-convection flow about a wedge under mixed thermal boundary conditions and a magnetic field. Heat Mass Transf 41:291–297

    Article  Google Scholar 

  13. Ece MC (2005) Free convection flow about a cone under mixed thermal boundary conditions and a magnetic fid. Appl Math Model 29:1121–1134

    Article  MATH  Google Scholar 

  14. Ramanaiah G, Malarvizhi G (1992) Free convection about a wedge and a cone subjected to mixed thermal boundary conditions. Acta Mech 93:119–123

    Article  Google Scholar 

  15. Choi S (1995) Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer DA, Wang HP (eds) Developments and applications of Non-Newtonian flows, ASME FED-231, MD–66, pp 99–105

  16. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalously thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254

    Article  Google Scholar 

  17. Gorla RSR, Chamkha A (2011) Natural convective boundary layer flow over a nonisothermal vertical plate embedded in a porous medium saturated with a nanofluid. Nanoscale Microscale Thermophys Eng 15:81–94

    Article  Google Scholar 

  18. Nield DA, Kuznetsov AV (2009) The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int J Heat Mass Transf 52:5792–5795

    Article  MATH  Google Scholar 

  19. Khan W, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53:2477–2483

    Article  MATH  Google Scholar 

  20. Mahdy A, Ahmed SE (2012) Laminar free convection over a vertical wavy surface embedded in a porous medium saturated with a nanofluid. Transp Porous Med 91:423–435

    Article  MathSciNet  Google Scholar 

  21. Kuznetsov AV, Nield DA (2010) The onset of double-diffusive nanofluid convection in a layer of a saturated porous medium. Transp Porous Med 85:941–951

    Article  MathSciNet  Google Scholar 

  22. Kuznetsov AV, Nield DA (2010) Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci 49:243–247

    Article  Google Scholar 

  23. Mahdy A, ElShehabey HM (2012) Uncertainties in physical property effects on viscous flow and heat transfer over a nonlinearly stretching sheet with nanofluids. Int Commun Heat Mass Transf 39:713–719

    Article  Google Scholar 

  24. Mahdy A (2012) Unsteady mixed convection boundary layer flow and heat transfer nanofluids due to stretching sheet. Nuclear Eng Design 249:248–255

    Article  Google Scholar 

  25. Makinde OD, Aziz A (2011) Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int J Therm Sci 50:1326–1332

    Article  Google Scholar 

  26. Noghrehabadi A, Behseresh A, Ghalambaz M (2013) Natural convection flow of nanofluids over vertical cone embedded in non-Darcy porous media. J Thermophys Heat Transf 27:334–341

    Article  Google Scholar 

  27. Jaluria Y, Torrance KE (2003) Computational heat transfer, 2nd edn. Taylor & Francis, New York

    Google Scholar 

  28. Cheng P, Lee TT, Pop I (1985) Natural convection of a Darcian fluid about a cone. Int Commun Heat Mass Transf 12:705–717

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their very sincere thanks to the reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mahdy.

Additional information

Technical Editor: Monica Feijo Naccache.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahdy, A. Non-Newtonian nanofluid free convection flow subject to mixed thermal boundary conditions about a vertical cone. J Braz. Soc. Mech. Sci. Eng. 36, 951–960 (2014). https://doi.org/10.1007/s40430-014-0132-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-014-0132-4

Keywords

Navigation