Skip to main content
Log in

Three-dimensional finite element method for rotating disk flows

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper deals with the numerical simulation of rotating disk flow, coupling the hydrodynamic field to the transport of a chemical species generated in electrochemical cells by the dissolution of an iron electrode in a 1M H2SO4 electrolyte. The time asymptotic steady-state solution of rotating disk flow obtained in this work by numerical integration of the incompressible Navier–Stokes equations through the finite element method (FEM) with the appropriate boundary conditions is consistent with the generalized von Kármán’s similarity solution. This paper reviews the main features of generalized von Kármán’s flow, the adopted FEM scheme, a discussion of implementation of the boundary conditions, validation of the code and the results. In particular, the results confirm the assumption that the non-dimensional velocity and concentration profiles do not depend on the coordinate along the radial direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Levich V (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs, New Jersey

  2. Barcia O, Mattos O, Tribollet B (1992) Anodic dissolution of iron in acid sulfate under mass transport control. J Electrochem Soc 139:446–453

    Article  Google Scholar 

  3. Mangiavacchi N, Pontes J, Barcia OE, Mattos OE, Tribollet B (2007) Rotating disk flow stability in electrochemical cells: effect of the transport of a chemical species. Phys Fluids 19:114109

    Article  Google Scholar 

  4. Hughes T, Franca L, Balestra M (1985) A new finite element formulation for computational fluid dynamics: V. circunventing the Babuska–Brezzi condition: a stable Petrov–Galerkin formulation of the stokes problem accomodating equal-order interpolations. Computer Methodos Appl Mech Eng 59:85–99

    Article  MathSciNet  Google Scholar 

  5. Hughes T, Franca L, Mallet M (1986) A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible euler and Navier–Stokes equation and the second law of thermodynamics. Computer Methodos Appl Mech Eng 54:223–34

    Article  MathSciNet  MATH  Google Scholar 

  6. Donea J (1984) A Taylor–Galerkin method for convective transport problems. Int J Num Methods Eng 20:101–19

    Article  MATH  Google Scholar 

  7. Löhner R, Morgan K, Zienkiewicz O (1985) An adaptive finite element procedure for compressible high speed flows. Computer Methodos Appl Mech Eng 51:441–65

    Article  MATH  Google Scholar 

  8. Oden J, Babuska I, Baumann C (1998) A discontinuous hp finite element method for diffusion problems. J Comput Phys 146:491–519

    Article  MathSciNet  MATH  Google Scholar 

  9. Baumann C, Oden J (1998) A discontinuous hp finite element method for convection–diffusion problems. Computer Methods Appl Mech Eng 175:311–341

    Article  MathSciNet  Google Scholar 

  10. Moisy F, Doaré O, Passuto T, Daube O, Rabaud M (2004) Experimental and numerical study of the shear layer instability between two counter-rotating disks. J Fluid Mech 507:175–202

    Article  MATH  Google Scholar 

  11. Batchelor GK (1967) An introduction to fluid dynamics. Cambridge Mathematical Library, Cambridge University Press, New York

  12. Barcia O, Mangiavacchi N, Mattos O, Pontes J, Tribollet B (2008) Rotating disk flow in electrochemical cells: a coupled solution for hydrodynamic and mass equations. J Eletrochem Soc 155:424–427

    Article  Google Scholar 

  13. Hughes T, Brooks A (1982) A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline upwind procedure. In: Gallagher RH, Norrie DM, Oden JT, Zienkiewicz OC (eds) Finite elements in fluids. Selected papers from the Third international conference on finite elements in flow problems, Canada, June 10–13, vol. 4. Wiley, New York

  14. Wiin-Nielsen A (1959) On the application of trajectory methods in numerical forecasting. Tellus 11:180–196

    Article  Google Scholar 

  15. Krishnamurti T (1962) Numerical integration of primitive equations by a quasi-Lagrangian advective scheme. J Appl Meteorol 1:508–521

    Article  Google Scholar 

  16. Sawyer J (1963) A semi-Lagrangian method of solving the vorticity advection equation. Tellus 15:336–342

    Article  Google Scholar 

  17. Robert A (1981) A stable numerical integration scheme for the primitive meteorological equations. Atmosphere Oceans 19:35–46

    Article  Google Scholar 

  18. Pironneau O (1982) On the transport-diffusion algorithm and its applications to the Navier–Stokes equation. Numerische Mathematik 38:309–332

    Article  MathSciNet  MATH  Google Scholar 

  19. Durran D (1998) Numerical Methods for waves equations in geophysical fluid dynamics. In: Marsden JE et al. (eds) Text in applied mathematics, 1st edn. Springer, Berlin

  20. Anjos G, Mangiavacchi N, Pontes J, Botelho C (2006) Modelagem numérica de escoamentos acoplados ao transporte de uma espécie química pelo método dos elementos finitos. In: ENCIT 2006—Congresso Brasileiro de Ciências Térmicas e Engenharia, Curitiba, Brazil

  21. Anjos G, Mangiavacchi N, Pontes J, Botelho C (2006) Simulação numérica das equações de saint-venant utilizando o método dos elementos finitos. In: 16 POSMEC—Simpósio de Pós-Graduação em Engenharia Mecânica. Uberlândia, Brazil

  22. Purser R, Leslie L (1996) Generalized Adams–Bashforth time integration schemes for a semi-Lagrangian model employing the second-derivative of the horizontal momentum equations. Quart J Royal Meteorol Soc 122:737–763

    Google Scholar 

  23. Cuvelier C, Segal A, van Steenhoven AA (1986) Finite element method and Navier–Stokes equations. Dordrecht, Holland

    Book  Google Scholar 

  24. Zienkiewicz OC, Taylor RL (2000) The finite element method for fluids dynamics, 5th edn. Butterworth-Heinemann, Oxford

  25. Oden JT, Carey G (1984) Finite elements: mathematical aspects. Texas finite element series, vol 4, Prentice-Hall, New Jersey

  26. Hughes TJR (1987) The finite element method—linear static and dynamic finite element analysis. Dover civil and mechanical engineering. Dover Publications, New York

  27. Zienkiewicz OC, Taylor RL (2000) The finite element method volume 1: the basis, 5th edn. Butterworth-Heinemann, Oxford

  28. Chorin AJ (1968) Numerical solution of the Navier–Stokes equations. Math Comput 22:745–762

    Article  MathSciNet  MATH  Google Scholar 

  29. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere series on computational methods in mechanics and thermal science. Taylor & Francis, New York

  30. Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8:2182–2189

    Article  MATH  Google Scholar 

  31. Lee M, Oh B, Kim Y (2001) Canonical fractional-step methods and consistent boundary conditions for the incompressible Navier–Stokes equations. J Comput Phys 168(1):73–100

    Article  MATH  Google Scholar 

  32. Chang W, Giraldo F, Perot B (2002) Analysis of an exact fractional step method. J Comput Phys 180:183–199

    Article  MATH  Google Scholar 

  33. Christov CI, Pontes J (2002) Numerical scheme for Swift-Hohenberg equation with strict implementation of Lyapunov functional. Math Computer Model 35:87–99

    Article  MathSciNet  MATH  Google Scholar 

  34. Pontes J, Mangiavacchi N, Conceição AR, Barcia OE, Mattos OE, Tribollet B (2004) Rotating disk flow stability in electrochemical cells: effect of viscosity stratification. Phys Fluids 16(3):707–716

    Article  Google Scholar 

  35. Schlichting H (1960) Boundary layer theory. McGraw-Hill series in mechanical engineering. McGraw-Hill, New York

Download references

Acknowledgment

Support from the Brazilian power utility company Furnas Centrais Elétricas S.A. and from CNPq and FAPERJ scientific agencies is acknowledged. The authors acknowledge Profs. Oscar R. Mattos and Oswaldo E. Barcia, from the Federal University of Rio de Janeiro and Bernard Tribollet, from CNRS-France, who posed the problem of hydrodynamic stability in electrochemical cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Anjos.

Additional information

Technical Editor: Francisco Ricardo Cunha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anjos, G.R., Mangiavacchi, N. & Pontes, J. Three-dimensional finite element method for rotating disk flows. J Braz. Soc. Mech. Sci. Eng. 36, 709–724 (2014). https://doi.org/10.1007/s40430-013-0120-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-013-0120-0

Keywords

Navigation