Skip to main content
Log in

Estimation of open channels hydraulic parameters with the stochastic particle collision algorithm

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In the present work, the 1D flow and transport equations for open channels are numerically solved and coupled to a recently developed global search optimization, the particle collision algorithm (PCA), to estimate two essential parameters present in flow and transport equations, respectively, the bed roughness and the dispersion coefficient. The PCA is inspired in the scattering and absorption phenomena of a given incident nuclear particle by a target nucleus. In this method, if the particle in a given location of the design space reaches a low value of the objective function, it is absorbed, otherwise, it is scattered. This allows the search space to be widely explored, in such a way that the most promising regions are searched through successive scattering and absorption events. Based on real data measured in the Albear channel, Cuba, the bed roughness and longitudinal dispersion coefficient were successfully estimated from two numerical experiments dealing, respectively, with flow and transport equations. The results obtained were supported by the high correlations achieved between simulations and observations, demonstrating the feasibility of the approach here considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area (m2)

C :

Substance concentration (kg m−3)

D :

Longitudinal dispersion coefficient (m2 s−1)

D q :

Bulk discharge, seepage, or lateral input (m2 s−1)

g :

Acceleration due to gravity (m s−2)

h :

Local flow depth (m)

k e :

Longitudinal coefficient of expansion or contraction

n :

Roughness coefficient (m1/6)

N T :

Number iterations (–)

q :

Input or lateral discharge (m2 s−1)

q est :

Estimated seepage loss (m3 s−1)

Q :

Flow discharge (m3 S−1)

R :

Hydraulic radius (m)

S 0 :

Longitudinal bed slope (–)

\( \bar{t} \) :

Mean traveling time (s)

T :

Top width (m)

U :

Mean velocity (m s−1)

X Θ :

Sensitivity coefficient (–)

v x :

Velocity component (m s−1)

\( \sigma_{t}^{2} \) :

Concentration variance (kg2 M−6)

τ:

Integration variable (s)

Θ:

Vector of parameters (–)

Ψobs :

Measured values (–)

Ψsim :

Computed values(–)

ψ :

Variable (–)

References

  1. Aguas de la Habana (2002) Informe Técnico de Visita al Canal. Empresa Aguas de La Habana, Havana

    Google Scholar 

  2. Alfonso JL (2008) Valoración Hidráulica de la Rehabilitación del Canal de Albear. XXXI Congreso Interamericano de Ingeniería Sanitaria y Ambiental, Havana

  3. Beck JV, Arnold KJ (1977) Parameter estimation in engineering and science. Wiley, New York

    MATH  Google Scholar 

  4. Beck JV, Blackwell B, St Clair C Jr (1985) Inverse heat conduction—Ill-posed problems. Wiley, New York

    MATH  Google Scholar 

  5. Chow VT (1959) Open channel hydraulics. Mc Graw Hill, New York

    Google Scholar 

  6. Fischer HB (1968) Dispersion predictions in natural stream. J Sanit Eng Div ASCE 94:927–944

    Google Scholar 

  7. Fischer HB, List EJ, Koh RCY, Imberger J, Brooks NH (1979) Mixing in inland and coastal waters. Academic Press, New York

    Google Scholar 

  8. Knupp DC, Silva Neto AJ, Sacco WF (2009) Radiative properties estimation with the particle collision algorithm based on a sensitivity analysis. High Temp High Press 38(2):137–151

    MathSciNet  Google Scholar 

  9. Levenspiel O (1974) Ingeniería de las Reacciones Químicas. Editorial Reverté, S. A., Barcelona

  10. Lugon Junior J, Silva Neto AJ, Rodrigues PPGW (2008) Assessment of dispersion mechanisms in rivers by means of an inverse problem approach. Inverse Probl Sci Eng 16(8):967–979

    Article  MATH  MathSciNet  Google Scholar 

  11. Mesa HR (2002) Calibración Automatizada de Parámetros Hidrogeológicos para Acuíferos en Régimen Impermanente. XX Congreso Latinoamericano de Hidráulica, IAHR, Havana

  12. Pacho Pardo F (1954) El canal de Albear: ¿tubería o conducto libre? Revista Ingeniería Civil 5(6)

  13. Rodríguez T, Alfonso ME, Alfonso JL (1996) Estudio sobre los Ciclos del Agua en La Habana. Informe de Metrópolis-Unión Europea, Havana, Cuba

  14. Sacco WF, Oliveira CRE, Pereira CMNA (2006) Two stochastic optimization algorithms applied to nuclear reactor core design. Prog Nucl Energy 48:525–539

    Article  Google Scholar 

  15. Sacco WF, Lapa CMF, Pereira CMNA, Filho HA (2008) A metropolis algorithm applied to a nuclear power plant auxiliary feedwater system surveillance tests policy optimization. Prog Nucl Energy 50:15–21

    Article  Google Scholar 

  16. Silva Neto AJ, Becceneri JC (2009) Nature inspired computational intelligence techniques: application to inverse radiative transfer problems. SBMAC-Brazilian Society of Applied and Applied Mathematics. São Carlos, Brazil

  17. Silva Neto AJ, Lugon Jr J, Soeiro FJCP, Biondi Neto L, Santana CC, Lobato FS, Steffen Jr V (2010) Application of simulated annealing and hybrid methods in the solution of inverse heat and mass transfer problems. In: Rui C (ed) Simulated annealing, theory with applications. InTech, Rijeka

  18. Strelkoff T (1970) Numerical solutions of the Saint Venant equations. J Hydr Div ASCE 96(1):223–251

    Google Scholar 

  19. Szymkiewicz R (2010) Numerical modeling in open channel hydraulics. Springer, Water Science and Technology Library

    Book  Google Scholar 

  20. Shen J (2006) Optimal estimation of parameters for an estuarine eutrophication model. Ecol Model 191:521–537

    Article  Google Scholar 

  21. Shen J, Jia JJ, McAllister Sison G (2006) Inverse estimation of nonpoint sources of fecal coliform for establishing allowable load for Wye River, Maryland. Water Res 40:3333–3342

    Article  Google Scholar 

  22. Strub IS, Percelay J, Stacey MT, Bayen AM (2009) Inverse estimation of open boundary conditions in tidal channels. Ocean Modeling 29:85–93

    Article  Google Scholar 

  23. Sun NZ (1994) Inverse problem in groundwater modelling. Norwell, Massachusetts

    Google Scholar 

  24. Yang Z, Hamrick JM (2005) Optimal control of salinity boundary condition in a tidal model using a variational inverse method. Estuar Coast Shelf Sci 62(1):13–24

    Article  Google Scholar 

  25. Yeh WWG (1986) Review of parameter identification procedures in groundwater hydrology: inverse problem. Water Resour Res 22(2):95–108

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the Brazilian agency CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), through the international cooperation program between Brazil and MES (Ministry of Higher Education, Cuba). They are also grateful for the information provided by Aguas de La Habana. Finally, the authors acknowledge Prof. Wagner Sacco for kindly providing all the details related to the implementation of the PCA. AJSN acknowledges also the financial support provided by FAPERJ, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, and CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoel Martínez González.

Additional information

Technical Editor: Francisco Cunha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez González, Y., Martínez Rodríguez, J.B., da Silva Neto, A.J. et al. Estimation of open channels hydraulic parameters with the stochastic particle collision algorithm. J Braz. Soc. Mech. Sci. Eng. 36, 69–77 (2014). https://doi.org/10.1007/s40430-013-0069-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-013-0069-z

Keywords

Navigation