Skip to main content

Optimization of ANN models using different optimization methods for improving CO2 laser cut quality characteristics

Abstract

Determination of optimal laser cutting parameter settings for obtaining high cut quality in CO2 laser cutting process is of great importance. In this paper an attempt has been made to apply different optimization methods for determining of optimal values of laser power, cutting speed, assist gas pressure and focus position with the purpose of improving the cut quality characteristics obtained in the CO2 laser cutting of stainless steel. The laser cutting experiment was planned and conducted according to the Taguchi’s L27 orthogonal array and the experimental data were used for developing mathematical models for surface roughness, kerf width and width of heat affected zone based on artificial neural networks (ANNs). Mathematical models of the cut quality characteristics were developed using single hidden layer ANN trained with Levenberg–Marquardt algorithm. This paper compares the quality of solutions obtained when optimizing ANN models using the real coded genetic algorithm (RCGA), simulated annealing (SA) and recently developed improved harmony search algorithm (IHSA). The computer code was written in MATLAB to integrate the ANN-based process models and the RCGA, SA and IHSA algorithms. For the purpose of comparison, some performance criteria were used. The merits and the limitations of the selected optimization methods were discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

APE:

Absolute percentage error (%)

f :

Focus position (mm)

HAZ:

Heat affected zone (μm)

IHSA:

Improved harmony search algorithm

K w :

Kerf width (mm)

n :

Number of data

P :

Laser power (kW)

p :

Assist gas pressure (bar)

R a :

Average surface roughness (μm)

RCGA:

Real coded genetic algorithm

SA:

Simulated annealing

v :

Cutting speed (m/min)

References

  1. Baseri H (2012) Simulated annealing based optimization of dressing conditions for increasing the grinding performance. Int J Adv Manuf Technol 59(5–8):531–538

    Article  Google Scholar 

  2. Blanco A, Delgado M, Pegalajar MC (2001) A real-coded genetic algorithm for training recurrent neural networks. Neural Netw 14(1):93–105

    Article  MathSciNet  Google Scholar 

  3. Biswas R, Kuar AS, Biswas SK, Mitra S (2010) Artificial neural network modelling of Nd:YAG laser microdrilling on titanium nitride–alumina composite. Proc Inst Mech Eng Part B J Eng Manuf 224(3):473–482

    Article  Google Scholar 

  4. Chaki S, Ghosal S (2011) Application of an optimized SA-ANN hybrid model for parametric modeling and optimization of LASOX cutting of mild steel. Prod Eng Res Dev 5(3):251–262

    Article  Google Scholar 

  5. Changyu S, Lixia W, Qian L (2007) Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method. J Mater Process Technol 183(2–3):412–418

    Google Scholar 

  6. Choudhury IA, Shirley S (2010) Laser cutting of polymeric materials: an experimental investigation. Opt Laser Technol 42(3):503–508

    Article  Google Scholar 

  7. Ciurana J, Arias G, Özel T (2009) Neural network modelling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel. Mater Manuf Process 24(3):358–368

    Article  Google Scholar 

  8. Dhara SK, Kuar AS, Mitra S (2008) An artificial neural network approach on parametric optimization of laser micro-machining of die-steel. Int J Adv Manuf Technol 39(1–2):39–46

    Article  Google Scholar 

  9. Dhupal D, Doloi B, Bhattacharyya B (2007) Optimization of process parameters of Nd:YAG laser microgrooving of Al2TiO5 ceramic material by response surface methodology and artificial neural network algorithm. Proc Inst Mech Eng Part B J Eng Manuf 221(8):1341–1350

    Article  Google Scholar 

  10. Eltawahni HA, Hagino M, Benyounis KY, Inoue T, Olabi AG (2012) Effect of CO2 laser cutting process parameters on edge quality and operating cost of AISI316L. Opt Laser Technol 44(4):1068–1082

    Article  Google Scholar 

  11. Feng CX, Yu ZG, Kusiak A (2006) Selection and validation of predictive regression and neural network models based on designed experiments. IIE Trans 38(1):13–23

    Article  Google Scholar 

  12. Ghoreishi M, Nakhjavani OB (2008) Optimisation of effective factors in geometrical specifications of laser percussion drilled holes. J Mater Process Technol 196(1–3):303–310

    Article  Google Scholar 

  13. Huehnlein K, Tschirpke K, Hellmann R (2010) Optimization of laser cutting processes using design of experiments. Phys Procedia 5(B):243–252

    Google Scholar 

  14. Jurković Z, Cukor G, Andrejcak I (2010) Improving the surface roughness at longitudinal turning using the different optimization methods. Tech Gaz 17(4):397–402

    Google Scholar 

  15. Karnik SR, Gaitonde VN, Campos Rubio J, Esteves Correia A, Abrão AM, Paulo Davim J (2008) Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model. Mater Des 29(9):1768–1776

    Article  Google Scholar 

  16. Kim K, Han I (2000) Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index. Expert Syst Appl 19(2):125–132

    Article  MathSciNet  Google Scholar 

  17. Madić M, Radovanović M (2012) Comparative modeling of CO2 laser cutting using multiple regression analysis and artificial neural network. Int J Phys Sci 7(16):2422–2430

    Google Scholar 

  18. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579

    Article  MATH  MathSciNet  Google Scholar 

  19. Mathew J, Goswami GL, Ramakrishnan N, Naik NK (1999) Parametric studies on pulsed Nd:YAG laser cutting of carbon fibre reinforced plastic composites. J Mater Process Technol 89–90(3–4):198–203

    Article  Google Scholar 

  20. Nallakumarasamy G, Srinivasan PSS, Venkatesh Raja K, Malayalamurthi R (2011) Optimization of operation sequencing in CAPP using simulated annealing technique (SAT). Int J Adv Manuf Technol 54(5–8):721–728

    Article  Google Scholar 

  21. Radovanović M, Dašić P (2006) Research on surface roughness by laser cut. Ann Univ “Dunarea De Jos” Galati 8:84–88

    Google Scholar 

  22. Radovanović M, Madić M (2011) Experimental investigations of CO2 laser cut quality: a review. Nonconv Technol Rev 15(4):35–42

    Google Scholar 

  23. Rajaram N, Sheikh-Ahmad J, Cheraghi SH (2003) CO2 laser cut quality of 4130 steel. Int J Mach Tools Manuf 43(4):351–358

    Article  Google Scholar 

  24. Razfar MR, Zinati RF, Haghshenas M (2011) Optimum surface roughness prediction in face milling by using neural network and harmony search algorithm. Int J Adv Manuf Technol 52(5–8):487–495

    Article  Google Scholar 

  25. Riveiro A, Quintero F, Lusquiños F, Comesaña R, Pou J (2011) Study of melt flow dynamics and influence on quality for CO2 laser fusion cutting. J Phys D Appl Phys 44(13):1–12

    Article  Google Scholar 

  26. Samanta S, Chakraborty S (2011) Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm. Eng Appl Artif Intell 24(6):946–957

    Article  Google Scholar 

  27. Sayarshada HR, Ghoseiri K (2009) A simulated annealing approach for the multi-periodic rail-car fleet sizing problem. Comput Oper Res 36(6):1789–1799

    Article  Google Scholar 

  28. Syn CZ, Mokhtar M, Feng CJ, Manurung YHP (2011) Approach to prediction of laser cutting quality by employing fuzzy expert system. Expert Syst Appl 38(6):7558–7568

    Article  Google Scholar 

  29. Tsai MJ, Li CH, Chen CC (2008) Optimal laser-cutting parameters for QFN packages by utilizing artificial neural networks and genetic algorithm. J Mater Process Technol 208(1–3):270–283

    Article  Google Scholar 

  30. Uslan I (2005) CO2 laser cutting: kerf width variation during cutting. Proc Inst Mech Eng Part B J Eng Manuf 219(8):571–577

    Article  Google Scholar 

  31. Yousef BF, Knopf GK, Bordatchev EV, Nikumb SK (2003) Neural network modeling and analysis of the material removal process during laser machining. Int J Adv Manuf Technol 22(1–2):41–53

    Article  Google Scholar 

  32. Yilbas BS (2001) Effect of process parameters on the kerf width during the laser cutting process. Proc Inst Mech Eng Part B J Eng Manuf 215(10):1357–1365

    Article  Google Scholar 

  33. Yilbas BS (2004) Laser cutting quality and thermal efficiency analysis. J Mater Process Technol 155–156:2106–2115

    Article  Google Scholar 

  34. Zandieh M, Amiri M, Vahdani B, Soltani R (2009) A robust parameter design for multi-response problems. J Comput Appl Math 230(2):463–476

    Article  MATH  MathSciNet  Google Scholar 

  35. Zarei O, Fesanghary M, Farshi B, Jalili Saffar R, Razfar MR (2009) Optimization of multi-pass face-milling via harmony search algorithm. J Mater Process Technol 209(5):2386–2392

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Madić.

Additional information

Technical Editor: Alexandre Abrão.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Madić, M., Radovanović, M., Manić, M. et al. Optimization of ANN models using different optimization methods for improving CO2 laser cut quality characteristics. J Braz. Soc. Mech. Sci. Eng. 36, 91–99 (2014). https://doi.org/10.1007/s40430-013-0054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-013-0054-6

Keywords

  • Optimization
  • Cut quality characteristics
  • Metaheuristics
  • Optimization
  • Artificial neural networks