Skip to main content
Log in

Turbulent non-premixed ethanol–air flame experimental study using laser diagnostics

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

A turbulent non-premixed ethanol spray flame is characterized through experiments using planar laser-induced fluorescence (PLIF) of the OH radical and Mie scattering of fuel droplets distribution. The spray burner generates a stable flame with the use of a bluff body. The OH fluorescence intensity demarcates the reaction zone. Initially, different water spray loadings are compared, allowing determining the spray characteristics. Then, two combustion situations are studied emphasizing the instantaneous distribution of the droplet cloud with respect to the reaction zone. The instantaneous and average OH images allow identifying local flame extinction. In the first situation, the spray is surrounded by flame, and complete droplet evaporation occurs before combustion, which represents a classical behaviour. In the second situation, droplets interact strongly with the combustion process leading to an unusually large extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Silveira JL, Bollini Braga L, Caetano de Souza AC, Santana Antunes J, Zanzi R.: (2009) The benefits of ethanol use for hydrogen production in urban transportation. Renew Sustain Energy Rev. doi:10.1016/j.rser.2009.06.032

  2. Kohse-Hoinghaus K, Barlow R, Aldén M, Wolfrum J (2005) Combustion at the focus: laser diagnostics and control. Proc Combust Inst. doi:10.1016/j.proci.2004.08.274

  3. Barlow RS (2005) Laser diagnostics and their interplay with computations to understand turbulent combustion. Proc Combust Inst. doi:10.1016/j.proci.2006.08.122

  4. Stepowski D, Cessou A, Goix P (1994) Flame stabilization and OH fluorescence mapping of the combustion structures in the near field of a spray jet. Combust Flame. doi:10.1016/0010-2180(94)90044-2

  5. Yu KH, Parr TP, Wilson KJ, Schadow KC, Gutmark EJ (1996) Active control of liquid-fueled combustion using periodic vortex–droplet interaction. Symposium (International) on Combustion. doi:10.1016/S0082-0784(96)80124-X

  6. Le Gal P, Farrugia N, Greenhalgh DA (1996) Laser sheet dropsizing of dense sprays. Optics Laser Technol. doi:10.1016/S0030-3992(99)00024-9

  7. Grisch F, Bresson A, Bouchardy P, Attal-Tretout B (2002) Advanced optical diagnostics applied to dynamic flames and turbulent jets. Aerosp Sci Technol. doi:10.1016/S1270-9638(02)01196-3

  8. Boyarshinov BF, Fedorov SYu (2004) Measurement of temperature and concentration of OH radicals in combustion of hydrogen and ethanol by the laser-induced fluorescence technique. Combust Explos Shock Waves 40(5):511–515

    Article  Google Scholar 

  9. Marley SK, Welle EJ, Lyons KM, Roberts WL.: (2004) Effects of leading edge entrainment on the double flame structure in lifted ethanol spray flames. Experiment Therm Fluid Sci. doi:10.1016/j.expthermflusci.2004.01.009

  10. Starner SH, Gounder J, Masri AR (2005) Effects of turbulence and carrier fluid on simple, turbulent spray jet flames. Combust Flame. doi:10.1016/j.combustflame.2005.08.016

  11. Masri AR, Gounder JD (2010) Turbulent spray flames of acetone and ethanol fuels approaching extinction. Combust Sci Technol. doi:10.1080/00102200903467754

  12. Duwel I, Ge HW, Kronemayer H, Dibble R, Gutheil E, Schulz C, Wolfrum J (2007) Experimental and numerical characterization of a turbulent spray flame. Proc Combust Inst. doi:10.1016/j.proci.2006.07.111

  13. Krieger Filho GC, Sacomano Filho FL (2013) Numerical simulation of an ethanol turbulent spray flame with RANS and diffusion combustion model. J Braz Soc Mech Sci Eng (in press)

  14. Moffat RJ (1982) Contributions to the theory of single-sample uncertainty analysis. J Fluids Eng 104:250-260

    Article  Google Scholar 

  15. Caetano N (2012) Estudo experimental de chamas turbulentas não pré-misturadas empregando técnicas de diagnóstico laser, PLIF e PIV. Doctorate Dissertation, Pontifícia Universidade Católica do Rio de Janeiro

  16. Alva Huapaya LE, Figueira da Silva LF, Azevedo LFA (2008) Numerical and experimental characterization of a non-premixed turbulent flame. 12th Brazilian Congress of Thermal Sciences and Engineering

  17. Borghi R, Champion M (2000) Modélisation et Théorie des Flammes. Ed. Technip, Paris

Download references

Acknowledgments

This work was performed under the grant CAPES-PRÓ-ENGENHARIAS – PE00X/2012 while the second author was on leave from the Institut Pprime, CNRS, France. The support received from Petrobras during the development of this work is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Fernando Figueira da Silva.

Additional information

Technical Editor: Fernando Alves Rochinha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egúsquiza Goñi, J.C., Figueira da Silva, L.F. Turbulent non-premixed ethanol–air flame experimental study using laser diagnostics. J Braz. Soc. Mech. Sci. Eng. 35, 177–188 (2013). https://doi.org/10.1007/s40430-013-0017-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-013-0017-y

Keywords

Navigation