Skip to main content

Advertisement

Log in

Neural Basis of Altered Impulsivity in Individuals With Internet Gaming Disorder: State-of-the-art Review

  • Published:
Current Addiction Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Impulsivity is a core feature and a risk factor of Internet Gaming Disorder (IGD). Hence, studies started examining the neural mechanisms that underlie this impulsivity. However, the big picture of such mechanisms is not clear. This paper seeks to survey recent cognitive neuroscience research on IGD and impulsivity and provide a synthesized view.

Recent Findings

Research has indicated that individuals with IGD have a greater degree of impulsivity than healthy controls (HC) and recreational Internet gaming users (RGU). This increased impulsivity has been associated with dysfunction or structural changes in the frontal lobe, striatum, amygdala, and insula, as well as the functional connectivity attributes between these areas. Nevertheless, there are some conflicting conclusions that should be explored further.

Summary

Studies have revealed that impulsivity is a risk factor for IGD, and that impulsivity facets are linked to IGD both behaviorally and neurobiologically. Additionally, the functional connections between the frontal lobe, striatum, amygdala, and insula could underlie the link between high impulsivity and IGD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Organization WH. International classification of diseases for mortality and morbidity statistics (11th Revision). 2019. https://icd.who.int/browse11/l-m/en.

  2. Kim HS, Son G, Roh E-B, Ahn W-Y, Kim J, Shin S-H, et al. Prevalence of gaming disorder: a meta-analysis. Addictive behaviors. 2022;126:107183. https://doi.org/10.1016/j.addbeh.2021.107183.

    Article  PubMed  Google Scholar 

  3. Saunders JB, Hao W, Long J, King DL, Mann K, Fauth-Bühler M, et al. Gaming disorder: its delineation as an important condition for diagnosis, management, and prevention. J Behav Addict. 2017;6(3):271–9. https://doi.org/10.1556/2006.6.2017.039.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gentile DA, Choo H, Liau A, Sim T, Li D, Fung D, et al. Pathological video game use among youths: a two-year longitudinal study. Pediatrics. 2011;127(2):e319–29. https://doi.org/10.1542/peds.2010-1353.

    Article  PubMed  Google Scholar 

  5. Stockdale L, Coyne SM. Video game addiction in emerging adulthood: Cross-sectional evidence of pathology in video game addicts as compared to matched healthy controls. J Affect Disord. 2018;225:265–72. https://doi.org/10.1016/j.jad.2017.08.045.

    Article  PubMed  Google Scholar 

  6. Choi B, Lee I, Choi D, Kim J. Collaborate and share: an experimental study of the effects of task and reward interdependencies in online games. Cyberpsychol Behav. 2007;10(4):591–5. https://doi.org/10.1089/cpb.2007.9985.

    Article  PubMed  Google Scholar 

  7. Yee N. Motivations for play in online games. Cyberpsychol Behav. 2006;9(6):772–5. https://doi.org/10.1089/cpb.2006.9.772.

    Article  PubMed  Google Scholar 

  8. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci. 2004;101(21):8174–9. https://doi.org/10.1073/pnas.0402680101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. • Wang Y, Wu L, Wang L, Zhang Y, Du X, Dong G. 2017 Impaired decision-making and impulse control in Internet gaming addicts: evidence from the comparison with recreational Internet game users. Addiction Biology 22(6):1610-21. https://doi.org/10.1111/adb.12458. A study comparing neural differences between IGD and RGU during DD and PD task.

  10. Du X, Qi X, Yang Y, Du G, Gao P, Zhang Y, et al. Altered structural correlates of impulsivity in adolescents with internet gaming disorder. Front Hum Neurosci. 2016;10:4. https://doi.org/10.3389/fnhum.2016.00004.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yen J-Y, Chou W-P, Liao H-Y, Ko C-H. Comparing the approaches and validity of ICD-11 criteria for gaming disorder and DSM-5 criteria for Internet gaming disorder. Current Addiction Reports. 2022:1–9. https://doi.org/10.1007/s40429-022-00459-y.

  12. Reed GM, First MB, Billieux J, Cloitre M, Briken P, Achab S, et al. Emerging experience with selected new categories in the ICD-11: complex PTSD, prolonged grief disorder, gaming disorder, and compulsive sexual behaviour disorder. World Psychiatry. 2022;21(2):189–213. https://doi.org/10.1002/wps.20960.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Şalvarlı Şİ, Griffiths MD. The association between Internet gaming disorder and impulsivity: a systematic review of literature. Int J Ment Heal Addict. 2022;20(1):92–118. https://doi.org/10.1007/s11469-019-00126-w.

    Article  Google Scholar 

  14. Kim YJ, Lim JA, Lee JY, Oh S, Kim SN, Kim DJ, et al. Impulsivity and compulsivity in Internet gaming disorder: a comparison with obsessive-compulsive disorder and alcohol use disorder. J Behav Addict. 2017;6(4):545–53. https://doi.org/10.1556/2006.6.2017.069.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Starcevic V, Aboujaoude E. Internet gaming disorder, obsessive-compulsive disorder, and addiction. Curr Addict Rep. 2017;4(3):317–22. https://doi.org/10.1007/s40429-017-0158-7.

    Article  Google Scholar 

  16. Wölfling K, Duven E, Wejbera M, Beutel M, Müller K. Discounting delayed monetary rewards and decision making in behavioral addictions–a comparison between patients with gambling disorder and internet gaming disorder. Addict Behav. 2020;108:106446. https://doi.org/10.1016/j.addbeh.2020.106446.

    Article  PubMed  Google Scholar 

  17. Fauth-Bühler M, Mann K. Neurobiological correlates of internet gaming disorder: similarities to pathological gambling. Addict Behav. 2017;64:349–56. https://doi.org/10.1016/j.addbeh.2015.11.004.

    Article  PubMed  Google Scholar 

  18. Moeller FG, Barratt ES, Dougherty DM, Schmitz JM, Swann AC. Psychiatric aspects of impulsivity. Am J Psychiatry. 2001;158(11):1783–93. https://doi.org/10.1176/appi.ajp.158.11.1783.

    Article  CAS  PubMed  Google Scholar 

  19. Rochat L, Billieux J, Gagnon J, Van der Linden M. A multifactorial and integrative approach to impulsivity in neuropsychology: insights from the UPPS model of impulsivity. J Clin Exp Neuropsychol. 2018;40(1):45–61. https://doi.org/10.1080/13803395.2017.1313393.

    Article  PubMed  Google Scholar 

  20. Strickland JC, Johnson MW. Rejecting impulsivity as a psychological construct: a theoretical, empirical, and sociocultural argument. Psychol Rev. 2021;128(2):336. https://doi.org/10.1037/rev0000263.

    Article  PubMed  Google Scholar 

  21. Verdejo-García A, Lawrence AJ, Clark L. Impulsivity as a vulnerability marker for substance-use disorders: review of findings from high-risk research, problem gamblers and genetic association studies. Neurosci Biobehav Rev. 2008;32(4):777–810. https://doi.org/10.1016/j.neubiorev.2007.11.003.

    Article  PubMed  Google Scholar 

  22. Pontes HM, Griffiths MD. Internet addiction disorder and internet gaming disorder are not the same. Journal of Addiction Research & Therapy. 2014;5(4). https://doi.org/10.4172/2155-6105.1000e124.

  23. Cyders MA, Coskunpinar A. Measurement of constructs using self-report and behavioral lab tasks: is there overlap in nomothetic span and construct representation for impulsivity? Clin Psychol Rev. 2011;31(6):965–82. https://doi.org/10.1016/j.cpr.2011.06.001.

    Article  PubMed  Google Scholar 

  24. Patton JH, Stanford MS, Barratt ES. Factor structure of the Barratt impulsiveness scale. J Clin Psychol. 1995;51(6):768–74. https://doi.org/10.1002/1097-4679(199511)51:6%3c768::AID-JCLP2270510607%3e3.0.CO;2-1.

    Article  CAS  PubMed  Google Scholar 

  25. Bargeron AH, Hormes JM. Psychosocial correlates of internet gaming disorder: psychopathology, life satisfaction, and impulsivity. Comput Hum Behav. 2017;68:388–94. https://doi.org/10.1016/j.chb.2016.11.029.

    Article  Google Scholar 

  26. Ryu H, Lee J-Y, Choi A, Park S, Kim D-J, Choi J-S. The relationship between impulsivity and internet gaming disorder in young adults: mediating effects of interpersonal relationships and depression. Int J Environ Res Public Health. 2018;15(3):458. https://doi.org/10.3390/ijerph15030458.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shin D, Choi AR, Lee J, Chung SJ, Kim B, Park M, et al. The mediating effects of affect on associations between impulsivity or resilience and internet gaming disorder. J Clin Med. 2019;8(8):1102. https://doi.org/10.3390/jcm8081102.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hu J, Zhen S, Yu C, Zhang Q, Zhang W. Sensation seeking and online gaming addiction in adolescents: a moderated mediation model of positive affective associations and impulsivity. Front Psychol. 2017;8:699. https://doi.org/10.3389/fpsyg.2017.00699.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu G-C, Yen J-Y, Chen C-Y, Yen C-F, Chen C-S, Lin W-C, et al. Brain activation for response inhibition under gaming cue distraction in internet gaming disorder. Kaohsiung J Med Sci. 2014;30(1):43–51. https://doi.org/10.1016/j.kjms.2013.08.005.

    Article  PubMed  Google Scholar 

  30. Yao Y-W, Wang L-J, Yip SW, Chen P-R, Li S, Xu J, et al. Impaired decision-making under risk is associated with gaming-specific inhibition deficits among college students with Internet gaming disorder. Psychiatry Res. 2015;229(1–2):302–9. https://doi.org/10.1016/j.psychres.2015.07.004.

    Article  PubMed  Google Scholar 

  31. Ding W-n, Sun J-h, Sun Y-w, Chen X, Zhou Y, Zhuang Z-g, et al. Trait impulsivity and impaired prefrontal impulse inhibition function in adolescents with internet gaming addiction revealed by a Go/No-Go fMRI study. Behavioral and Brain Functions. 2014;10(1):1–9. http://www.behavioralandbrainfunctions.com/content/10/1/20.

  32. Chen CY, Huang MF, Yen JY, Chen CS, Liu GC, Yen CF, et al. Brain correlates of response inhibition in I nternet gaming disorder. Psychiatry Clin Neurosci. 2015;69(4):201–9. https://doi.org/10.1111/pcn.12224.

    Article  PubMed  Google Scholar 

  33. •• Chen J, Li X, Zhang Q, Zhou Y, Wang R, Tian C, et al. Impulsivity and response inhibition related brain networks in adolescents with internet gaming disorder: a preliminary study utilizing resting-state fMRI. Frontiers in Psychiatry. 2021;11:618319. https://doi.org/10.3389/fpsyt.2020.618319. The study discovers the relationship between prefrontal lobe and striatum in IGD.

  34. •• Shin YB, Kim H, Kim SJ, Kim JJ. A neural mechanism of the relationship between impulsivity and emotion dysregulation in patients with Internet gaming disorder. Addiction Biology. 2021;26(3):e12916. https://doi.org/10.1111/adb.12916. An empirical study reveales the role of the prefrontal and striatum regions in response inhibition and emotional regulation of IGD.

  35. Argyriou E, Davison CB, Lee TT. Response inhibition and internet gaming disorder: a meta-analysis. Addict Behav. 2017;71:54–60. https://doi.org/10.1016/j.addbeh.2017.02.026.

    Article  PubMed  Google Scholar 

  36. Weinstein A, Abu HB, Timor A, Mama Y. Delay discounting, risk-taking, and rejection sensitivity among individuals with internet and video gaming disorders. J Behav Addict. 2016;5(4):674–82. https://doi.org/10.1556/2006.5.2016.081.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tian M, Tao R, Zheng Y, Zhang H, Yang G, Li Q, et al. Internet gaming disorder in adolescents is linked to delay discounting but not probability discounting. Comput Hum Behav. 2018;80:59–66. https://doi.org/10.1016/j.chb.2017.10.018.

    Article  Google Scholar 

  38. Wang Y, Wu L, Zhou H, Lin X, Zhang Y, Du X, et al. Impaired executive control and reward circuit in Internet gaming addicts under a delay discounting task: independent component analysis. Eur Arch Psychiatry Clin Neurosci. 2017;267(3):245–55. https://doi.org/10.1007/s00406-016-0721-6.

    Article  PubMed  Google Scholar 

  39. Wang Y, Hu Y, Xu J, Zhou H, Lin X, Du X, et al. Dysfunctional prefrontal function is associated with impulsivity in people with internet gaming disorder during a delay discounting task. Frontiers in Psychiatry. 2017:287. https://doi.org/10.3389/fpsyt.2017.00287

  40. Zhou Y, Yao M, Fang S, Gao X. A dual-process perspective to explore decision making in internet gaming disorder: an ERP study of comparison with recreational game users. Comput Human Behav. 2022;128:107104. https://doi.org/10.1016/j.chb.2021.107104.

    Article  Google Scholar 

  41. Hou S, Fang X, Zhou N, Cai P. Effects of increasing the negativity of implicit outcome expectancies on Internet gaming impulsivity. Front Psych. 2020;11:336. https://doi.org/10.3389/fpsyt.2020.00336.

    Article  Google Scholar 

  42. • Wang Z, Liu X, Hu Y, Zheng H, Du X, Dong G. Altered brain functional networks in Internet gaming disorder: independent component and graph theoretical analysis under a probability discounting task. CNS spectrums. 2019;24(5):544-56. https://doi.org/10.1017/S1092852918001505. A study reveales the altered brain functional networks of IGD individuals during PD task.

  43. Chung W, Sun C-K, Tsai I, Hung K-C, Chiu H-J, Tzang R-F, et al. A systematic review and meta-analysis on the clinical implications of probability discounting among individuals with Internet gaming disorder. Sci Rep. 2021;11(1):1–10. https://doi.org/10.1038/s41598-021-82822-z.

    Article  CAS  Google Scholar 

  44. Yao YW, Zhang JT, Fang XY, Liu L, Potenza MN. Reward-related decision-making deficits in internet gaming disorder: a systematic review and meta-analysis. Addiction. 2022;117(1):19–32. https://doi.org/10.1111/add.15518.

    Article  PubMed  Google Scholar 

  45. Kennerley SW, Walton ME, Behrens TE, Buckley MJ, Rushworth MF. Optimal decision making and the anterior cingulate cortex. Nat Neurosci. 2006;9(7):940–7. https://doi.org/10.1038/nn1724.

    Article  CAS  PubMed  Google Scholar 

  46. Dong G, Huang J, Du X. Enhanced reward sensitivity and decreased loss sensitivity in Internet addicts: an fMRI study during a guessing task. J Psychiatr Res. 2011;45(11):1525–9. https://doi.org/10.1016/j.jpsychires.2011.06.017.

    Article  PubMed  Google Scholar 

  47. • Wang L, Wu L, Wang Y, Li H, Liu X, Du X, et al. Altered brain activities associated with craving and cue reactivity in people with Internet gaming disorder: evidence from the comparison with recreational Internet game users. Frontiers in Psychology. 2017;8:1150. https://doi.org/10.3389/fpsyg.2017.01150. The study reveals that altered brain activities in IGD associated with game-related cue reactivity.

  48. Lee D, Park J, Namkoong K, Kim IY, Jung Y-C. Gray matter differences in the anterior cingulate and orbitofrontal cortex of young adults with Internet gaming disorder: surface-based morphometry. J Behav Addict. 2018;7(1):21–30. https://doi.org/10.1556/2006.7.2018.20.

    Article  PubMed  PubMed Central  Google Scholar 

  49. • Lee D, Namkoong K, Lee J, Jung YC. Abnormal gray matter volume and impulsivity in young adults with Internet gaming disorder. Addiction Biology. 2018;23(5):1160-7. https://doi.org/10.1111/adb.12552. A study investigate the relationship of gray matter abnormalities to impulsivity in IGD.

  50. Kiehl KA, Liddle PF, Hopfinger JB. Error processing and the rostral anterior cingulate: an event-related fMRI study. Psychophysiology. 2000;37(2):216–23. https://doi.org/10.1111/1469-8986.3720216.

    Article  CAS  PubMed  Google Scholar 

  51. Dong G, Potenza MN. Risk-taking and risky decision-making in Internet gaming disorder: implications regarding online gaming in the setting of negative consequences. J Psychiatr Res. 2016;73:1–8. https://doi.org/10.1016/j.jpsychires.2015.11.011.

    Article  PubMed  Google Scholar 

  52. Bush G, Frazier JA, Rauch SL, Seidman LJ, Whalen PJ, Jenike MA, et al. Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the Counting Stroop. Biol Psychiat. 1999;45(12):1542–52. https://doi.org/10.1016/S0006-3223(99)00083-9.

    Article  CAS  PubMed  Google Scholar 

  53. Rudorf S, Preuschoff K, Weber B. Neural correlates of anticipation risk reflect risk preferences. J Neurosci. 2012;32(47):16683–92. https://doi.org/10.1523/JNEUROSCI.4235-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011;12(11):652–69. https://doi.org/10.1038/nrn3119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S. The role of the medial frontal cortex in cognitive control. Science. 2004;306(5695):443–7. https://doi.org/10.1126/science.1100301.

    Article  CAS  PubMed  Google Scholar 

  56. Christopoulos G. Neural correlates of basic decision parameters: expected value, risk, risk aversion and utility. University of Cambridge; 2008.

  57. Kwak KH, Hwang HC, Kim SM, Han DH. Comparison of behavioral changes and brain activity between adolescents with internet gaming disorder and student pro-gamers. Int J Environ Res Public Health. 2020;17(2):441. https://doi.org/10.3390/ijerph17020441.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kim JY, Chun JW, Park CH, Cho H, Choi J, Yang S, et al. The correlation between the frontostriatal network and impulsivity in Internet gaming disorder. Sci Rep. 2019;9(1):1–9. https://doi.org/10.1038/s41598-018-37702-4.

    Article  CAS  Google Scholar 

  59. Lee J, Lee S, Chun JW, Cho H, Kim D-j, Jung Y-C. Compromised prefrontal cognitive control over emotional interference in adolescents with internet gaming disorder. Cyberpsychol Behav Soc Networking. 2015;18(11):661–8. https://doi.org/10.1089/cyber.2015.0231.

    Article  Google Scholar 

  60. • Wu L-l, Potenza MN, Zhou N, Kober H, Shi X-h, Yip SW, et al. Efficacy of single-session transcranial direct current stimulation on addiction-related inhibitory control and craving: a randomized trial in males with Internet gaming disorder. Journal of Psychiatry and Neuroscience. 2021;46(1):E111-E8. https://doi.org/10.1503/jpn.190137. The first study that suggests the effects of tDCS on IGD.

  61. • Kim S-J, Kim M-K, Shin Y-B, Kim HE, Kwon JH, Kim J-J. Differences in resting-state functional connectivity according to the level of impulsiveness in patients with internet gaming disorder. Journal of Behavioral Addictions. 2021;10(1):88-98. https://doi.org/10.1556/2006.2021.00005. A study dicovers the functional connnectivity within the reward system.

  62. Ko C-H, Hsieh T-J, Wang P-W, Lin W-C, Yen C-F, Chen C-S, et al. Altered gray matter density and disrupted functional connectivity of the amygdala in adults with Internet gaming disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2015;57:185–92. https://doi.org/10.1016/j.pnpbp.2014.11.003.

    Article  PubMed  Google Scholar 

  63. Seok J-W, Sohn J-H. Altered gray matter volume and resting-state connectivity in individuals with internet gaming disorder: a voxel-based morphometry and resting-state functional magnetic resonance imaging study. Front Psych. 2018;9:77. https://doi.org/10.3389/fpsyt.2018.00077.

    Article  Google Scholar 

  64. Zha R, Bu J, Wei Z, Han L, Zhang P, Ren J, et al. Transforming brain signals related to value evaluation and self-control into behavioral choices. Hum Brain Mapp. 2019;40(4):1049–61. https://doi.org/10.1002/hbm.24379.

    Article  PubMed  Google Scholar 

  65. Cai C, Yuan K, Yin J, Feng D, Bi Y, Li Y, et al. Striatum morphometry is associated with cognitive control deficits and symptom severity in internet gaming disorder. Brain Imaging Behav. 2016;10(1):12–20. https://doi.org/10.1007/s11682-015-9358-8.

    Article  PubMed  Google Scholar 

  66. Raiha S, Yang G, Wang L, Dai W, Wu H, Meng G, et al. Altered reward processing system in internet gaming disorder. Front Psychiatry. 2020;11:599141. https://doi.org/10.3389/fpsyt.2020.599141.

    Article  PubMed  PubMed Central  Google Scholar 

  67. •• Chun J-W, Park C-H, Kim J-Y, Choi J, Cho H, Jung DJ, et al. Altered core networks of brain connectivity and personality traits in internet gaming disorder. Journal of Behavioral Addictions. 2020;9(2):298-311. https://doi.org/10.1556/2006.2020.00014. A study investigates the altered functional and effective connectivity of the core brain networks in the IGD.

  68. Wang L, Wu L, Lin X, Zhang Y, Zhou H, Du X, et al. Dysfunctional default mode network and executive control network in people with Internet gaming disorder: independent component analysis under a probability discounting task. Eur Psychiatry. 2016;34:36–42. https://doi.org/10.1016/j.eurpsy.2016.01.2424.

    Article  CAS  PubMed  Google Scholar 

  69. Schoenbaum G, Roesch MR, Stalnaker TA. Orbitofrontal cortex, decision-making and drug addiction. Trends Neurosci. 2006;29(2):116–24. https://doi.org/10.1016/j.tins.2005.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rolls ET. The orbitofrontal cortex and reward. Cereb Cortex. 2000;10(3):284–94. https://doi.org/10.1093/cercor/10.3.284.

    Article  CAS  PubMed  Google Scholar 

  71. Shakra MA, Leyton M, Moghnieh H, Pruessner J, Dagher A, Pihl R. Neurobiological correlates and predictors of two distinct personality trait pathways to escalated alcohol use. EBioMedicine. 2018;27:86–93. https://doi.org/10.1016/j.ebiom.2017.11.025.

    Article  PubMed  Google Scholar 

  72. Hare TA, Camerer CF, Rangel A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science. 2009;324(5927):646–8. https://doi.org/10.1126/science.1168450.

    Article  CAS  PubMed  Google Scholar 

  73. Kober H, Mende-Siedlecki P, Kross EF, Weber J, Mischel W, Hart CL, et al. Prefrontal–striatal pathway underlies cognitive regulation of craving. Proc Natl Acad Sci. 2010;107(33):14811–6. https://doi.org/10.1073/pnas.1007779107.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Picton TW, Stuss DT, Alexander MP, Shallice T, Binns MA, Gillingham S. Effects of focal frontal lesions on response inhibition. Cereb Cortex. 2007;17(4):826–38. https://doi.org/10.1093/cercor/bhk031.

    Article  PubMed  Google Scholar 

  75. Coxon JP, Stinear CM, Byblow WD. Stop and go: the neural basis of selective movement prevention. J Cogn Neurosci. 2009;21(6):1193–203. https://doi.org/10.1162/jocn.2009.21081.

    Article  PubMed  Google Scholar 

  76. Chen C-Y, Muggleton NG, Tzeng OJ, Hung DL, Juan C-H. Control of prepotent responses by the superior medial frontal cortex. Neuroimage. 2009;44(2):537–45. https://doi.org/10.1016/j.neuroimage.2008.09.005.

    Article  PubMed  Google Scholar 

  77. Drgonova J, Walther D, Hartstein GL, Bukhari MO, Baumann MH, Katz J, et al. Cadherin 13: human cis-regulation and selectively altered addiction phenotypes and cerebral cortical dopamine in knockout mice. Mol Med. 2016;22(1):537–47. https://doi.org/10.2119/molmed.2015.00170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim SH, Baik S-H, Park CS, Kim SJ, Choi SW, Kim SE. Reduced striatal dopamine D2 receptors in people with Internet addiction. NeuroReport. 2011;22(8):407–11. https://doi.org/10.1097/WNR.0b013e328346e16e.

    Article  CAS  PubMed  Google Scholar 

  79. Hou H, Jia S, Hu S, Fan R, Sun W, Sun T, et al. Reduced striatal dopamine transporters in people with internet addiction disorder. Journal of Biomedicine and Biotechnology. 2012;2012. https://doi.org/10.1155/2012/854524.

  80. Kühn S, Romanowski A, Schilling C, Lorenz R, Mörsen C, Seiferth N, et al. The neural basis of video gaming. Translational psychiatry. 2011;1(11):e53-e. https://doi.org/10.1038/tp.2011.53

  81. Wei L, Zhang S, Turel O, Bechara A, He Q. A tripartite neurocognitive model of internet gaming disorder. Frontiers in Psychiatry. 2017:285. https://doi.org/10.3389/fpsyt.2017.00285

  82. Amstadter A. Emotion regulation and anxiety disorders. J Anxiety Disord. 2008;22(2):211–21. https://doi.org/10.1016/j.janxdis.2007.02.004.

    Article  PubMed  Google Scholar 

  83. Baur V, Hänggi J, Langer N, Jäncke L. Resting-state functional and structural connectivity within an insula–amygdala route specifically index state and trait anxiety. Biol Psychiat. 2013;73(1):85–92. https://doi.org/10.1016/j.biopsych.2012.06.003.

    Article  PubMed  Google Scholar 

  84. Banks SJ, Eddy KT, Angstadt M, Nathan PJ, Phan KL. Amygdala–frontal connectivity during emotion regulation. Soc Cognit Affect Neurosci. 2007;2(4):303–12. https://doi.org/10.1093/scan/nsm029.

    Article  Google Scholar 

  85. Naqvi NH, Bechara A. The hidden island of addiction: the insula. Trends Neurosci. 2009;32(1):56–67. https://doi.org/10.1016/j.tins.2008.09.009.

    Article  CAS  PubMed  Google Scholar 

  86. Turel O, He Q, Wei L, Bechara A. The role of the insula in internet gaming disorder. Addict Biol. 2021;26(2):12894.

    Article  Google Scholar 

  87. Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD. Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb Cortex. 2012;22(1):158–65. https://doi.org/10.1093/cercor/bhr099.

    Article  CAS  PubMed  Google Scholar 

  88. Schmidt A, Denier N, Magon S, Radue E-W, Huber C, Riecher-Rossler A, et al. Increased functional connectivity in the resting-state basal ganglia network after acute heroin substitution. Translational psychiatry. 2015;5(3):e533-e. https://doi.org/10.1038/tp.2015.28.

  89. Volkow ND, Wang G-J, Fowler JS, Tomasi D. Addiction circuitry in the human brain. Annu Rev Pharmacol Toxicol. 2012;52:321–36. https://doi.org/10.1146/annurev-pharmtox-010611-134625.

    Article  CAS  PubMed  Google Scholar 

  90. Smallwood J, Bernhardt BC, Leech R, Bzdok D, Jefferies E, Margulies DS. The default mode network in cognition: a topographical perspective. Nat Rev Neurosci. 2021;22(8):503–13. https://doi.org/10.1038/s41583-021-00474-4.

    Article  CAS  PubMed  Google Scholar 

  91. Bonnelle V, Ham TE, Leech R, Kinnunen KM, Mehta MA, Greenwood RJ, et al. Salience network integrity predicts default mode network function after traumatic brain injury. Proc Natl Acad Sci. 2012;109(12):4690–5. https://doi.org/10.1073/pnas.1113455109.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214(5):655–67. https://doi.org/10.1007/s00429-010-0262-0.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Choi SW, Kim HS, Kim GY, Jeon Y, Park SM, Lee JY, et al. Similarities and differences among Internet gaming disorder, gambling disorder and alcohol use disorder: a focus on impulsivity and compulsivity. J Behav Addict. 2014;3(4):246–53. https://doi.org/10.1556/jba.3.2014.4.6.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Park SM, Lee JY, Kim YJ, Lee J-Y, Jung HY, Sohn BK, et al. Neural connectivity in Internet gaming disorder and alcohol use disorder: a resting-state EEG coherence study. Sci Rep. 2017;7(1):1–12. https://doi.org/10.1038/s41598-017-01419-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim H, Kim YK, Lee JY, Choi AR, Choi J-S. Hypometabolism and altered metabolic connectivity in patients with internet gaming disorder and alcohol use disorder. Progr Neuro-Psychopharmacol Biol Psych. 2019;95:109680. https://doi.org/10.1016/j.pnpbp.2019.109680.

    Article  Google Scholar 

  96. Yan W-S, Chen R-T, Liu M-M, Zheng D-H. Monetary reward discounting, inhibitory control, and trait impulsivity in young adults with internet gaming disorder and nicotine dependence. Front Psych. 2021;12:628933. https://doi.org/10.3389/fpsyt.2021.628933.

    Article  Google Scholar 

  97. Ge X, Sun Y, Han X, Wang Y, Ding W, Cao M, et al. Difference in the functional connectivity of the dorsolateral prefrontal cortex between smokers with nicotine dependence and individuals with internet gaming disorder. BMC Neurosci. 2017;18(1):1–10. https://doi.org/10.1186/s12868-017-0375-y.

    Article  Google Scholar 

  98. • Qin K, Zhang F, Chen T, Li L, Li W, Suo X, et al. Shared gray matter alterations in individuals with diverse behavioral addictions: a voxel-wise meta-analysis. J Behav Addict 2020;9(1):44-57. https://doi.org/10.1556/2006.2020.00006. A meta-analysis integrates VBM studies on different behavioral addictions (Most are IGD and Gambling Disorder).

  99. Smith JL, Mattick RP, Jamadar SD, Iredale JM. Deficits in behavioural inhibition in substance abuse and addiction: a meta-analysis. Drug Alcohol Depend. 2014;145:1–33. https://doi.org/10.1016/j.drugalcdep.2014.08.009.

    Article  PubMed  Google Scholar 

  100. Miedl SF, Peters J, Büchel C. Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Arch Gen Psychiatry. 2012;69(2):177–86. https://doi.org/10.1001/archgenpsychiatry.2011.1552.

    Article  PubMed  Google Scholar 

  101. Meng Y-j, Deng W, Wang H-y, Guo W-j, Li T, Lam C, et al. Reward pathway dysfunction in gambling disorder: a meta-analysis of functional magnetic resonance imaging studies. Behav Brain Res. 2014;275:243–51. https://doi.org/10.1016/j.bbr.2014.08.057.

    Article  PubMed  Google Scholar 

  102. Moran-Santa Maria MM, Hartwell KJ, Hanlon CA, Canterberry M, Lematty T, Owens M, et al. Right anterior insula connectivity is important for cue-induced craving in nicotine-dependent smokers. Addict Biol. 2015;20(2):407–14. https://doi.org/10.1111/adb.12124.

    Article  CAS  PubMed  Google Scholar 

  103. Zahalka E, Seidler F, Lappi S, McCook E, Yanai J, Slotkin T. Deficits in development of central cholinergic pathways caused by fetal nicotine exposure: differential effects on choline acetyltransferase activity and [3H] hemicholinium-3 binding. Neurotoxicol Teratol. 1992;14(6):375–82. https://doi.org/10.1016/0892-0362(92)90047-E.

    Article  CAS  PubMed  Google Scholar 

  104. Rehbein F, King DL, Staudt A, Hayer T, Rumpf H-J. Contribution of game genre and structural game characteristics to the risk of problem gaming and gaming disorder: a systematic review. Curr Addict Rep. 2021;8(2):263–81. https://doi.org/10.1007/s40429-021-00367-7.

    Article  Google Scholar 

Download references

Funding

This work was supported by research grants from the National Natural Science Foundation of China (31972906), Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0215), Fundamental Research Funds for the Central Universities (SWU2209235), the Innovation Research 2035 Pilot Plan of Southwest University (SWUPilotPlan006), the High-end Foreign Expert Introduction Program (G2022168001L), and the Open Research Fund of the State Key Laboratory of Cognitive Neuroscience and Learning (CNLZD2102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua He.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent.

N/A

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Turel, O. & He, Q. Neural Basis of Altered Impulsivity in Individuals With Internet Gaming Disorder: State-of-the-art Review. Curr Addict Rep 10, 107–121 (2023). https://doi.org/10.1007/s40429-023-00481-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40429-023-00481-8

Keywords

Navigation