Epidemiological Challenges in the Study of Behavioral Addictions: a Call for High Standard Methodologies

Abstract

Purpose of Review

The 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) categorizes gambling disorder in the section on substance-related and addictive disorders, and the 11th revision of the International Classification of Diseases (ICD-11) includes both gambling and gaming disorder as disorders due to addictive behaviors. However, there is less evidence for other putative behavioral addictions. This review focuses on requirements for epidemiological studies of disorders that may be considered as behavioral addictions and compares the current state of research with principles of sound epidemiological research.

Recent Findings

In studies of behavioral addictions, samples are often quite small, which may lead to increased random error. The lack of sound assessment tools—particularly the lack of agreed-upon diagnostic criteria and standardized diagnostic interviews—may also increase systematic error. Other concerns related to systematic bias include the use of convenience samples, lack of pro-active recruitment, inadequate assessment of confounding variables, and a dearth of representative and longitudinal studies.

Summary

This review recommends that future studies of putative behavioral addictions should more closely adhere to methodological standards of epidemiological research to reduce random and systematic error. Specific recommendations are detailed to advance epidemiological research in this area with the aim of improving the evidence base and generating more refined public health recommendations and policies.

This is a preview of subscription content, log in to check access.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    American Psychiatric Association, editor. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, D.C.: American Psychiatric Association; 2013.

    Google Scholar 

  2. 2.

    World Health Organization. ICD-11 for mortality and morbidity statistics. Mental, behavioural or neurodevelopmental disorders. World Health Organisation,. 2018. https://icd.who.int/browse11/l-m/en. Accessed Jan 30 2019.

  3. 3.

    Rumpf HJ, Achab S, Billieux J, Bowden-Jones H, Carragher N, Demetrovics Z. Including gaming disorder in the ICD-11: the need to do so from a clinical and public health perspective. J Behav Addict. 2018:1–6. https://doi.org/10.1556/2006.7.2018.59.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    •• Saunders JB, Hao W, Long J, King DL, Mann K, Fauth-Buhler M, et al. Gaming disorder: its delineation as an important condition for diagnosis, management, and prevention. J Behav Addict. 2017;6(3):271–9. https://doi.org/10.1556/2006.6.2017.039 This review outlines the evidence for incuding gaming disorder in ICD-11.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Baggio S, Starcevic V, Studer J, Simon O, Gainsbury SM, Gmel G, et al. Technology-mediated addictive behaviors constitute a Spectrum of related yet distinct conditions: a network perspective (vol 32, pg 564, 2018). Psychol Addict Behav. 2018;32(6):594. https://doi.org/10.1037/adb0000405.

    Article  Google Scholar 

  6. 6.

    Earp BD, Wudarczyk OA, Foddy B, Savulescu J. Addicted to love: what is love addiction and when should it be treated? Philosophy Psychiatry Psychol. 2017;24(1):77–92. https://doi.org/10.1353/ppp.2017.0011.

    Article  Google Scholar 

  7. 7.

    Hing N, Russell A, Tolchard B, Nower L. Risk factors for gambling problems: an analysis by gender. J Gambl Stud. 2016;32(2):511–34. https://doi.org/10.1007/s10899-015-9548-8.

    Article  PubMed  Google Scholar 

  8. 8.

    Yakovenko I, Hodgins DC. A scoping review of co-morbidity in individuals with disordered gambling. Int Gambl Stud. 2018;18(1):143–72. https://doi.org/10.1080/14459795.2017.1364400.

    Article  Google Scholar 

  9. 9.

    Subramaniam M, Chua BY, Abdin E, Pang S, Satghare P, Vaingankar JA, et al. Prevalence and correlates of Internet gaming problem among Internet users: results from an Internet survey. Ann Acad Med Singap. 2016;45(5):174–83.

    PubMed  Google Scholar 

  10. 10.

    Hasin D, Keyes K. The epidemiology of alcohol and drug disorders. In: Johnson BA, editor. Addiction medicine. New York: Springer; 2011. p. 23–49.

    Google Scholar 

  11. 11.

    Brand M, Young KS, Laier C, Wolfling K, Potenza MN. Integrating psychological and neurobiological considerations regarding the development and maintenance of specific Internet-use disorders: an Interaction of Person-Affect-Cognition-Execution (I-PACE) model. Neurosci Biobehav Rev. 2016;71:252–66. https://doi.org/10.1016/j.neubiorev.2016.08.033.

    Article  PubMed  Google Scholar 

  12. 12.

    Rothman. Modern epidemiology. Boston/Toronto: Little, Brown and Company; 1986.

    Google Scholar 

  13. 13.

    Petry NM, Stinson FS, Grant BF. Comorbidity of DSM-IV pathological gambling and other psychiatric disorders: results from the National Epidemiologic Survey on Alcohol and Related Conditions. J Clin Psychiatry. 2005;66(5):564–74.

    Article  PubMed  Google Scholar 

  14. 14.

    Kessler RC, Hwang I, LaBrie R, Petukhova M, Sampson NA, Winters KC, et al. DSM-IV pathological gambling in the National Comorbidity Survey Replication. Psychol Med. 2008;38:1351–60.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Fam JY. Prevalence of internet gaming disorder in adolescents: a meta-analysis across three decades. Scand J Psychol. 2018;59(5):524–31. https://doi.org/10.1111/sjop.12459.

    Article  PubMed  Google Scholar 

  16. 16.

    Kuss DJ, Griffiths MD, Karila L, Billieux J. Internet addiction: a systematic review of epidemiological research for the last decade. Curr Pharm Des. 2014;20(25):4026–52. https://doi.org/10.2174/13816128113199990617

    CAS  Article  PubMed  Google Scholar 

  17. 177.

    •• Mihara S, Higuchi S. Cross-sectional and longitudinal epidemiological studies of Internet gaming disorder: a systematic review of the literature. Psychiatry Clin Neurosci. 2017;71(7):425–44. https://doi.org/10.1111/pcn.12532 This is a comprehensive review on epidemiological studies in the area of gaming disorder.

    Article  PubMed  Google Scholar 

  18. 18.

    •• Billieux J, King DL, Higuchi S, Achab S, Bowden-Jones H, Hao W, et al. Functional impairment matters in the screening and diagnosis of gaming disorder. J Behav Addict. 2017;6(3):285–9. https://doi.org/10.1556/2006.6.2017.036 This article highlights the need to consider functional impairment in behavioral addictions.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Király O, Nagygyörgy K, Koronczai B, Griffiths MD, Demetrovics Z. Assessment of problematic internet use and online video gaming. In: Aboujaoude E, Starcevic V, editors. Mental health in the digital age: grave dangers, great promise. New York: Oxford University Press; 2015. p. 46–68.

    Google Scholar 

  20. 20.

    Laconi S, Rodgers RF, Chabrol H. The measurement of Internet addiction: a critical review of existing scales and their psychometric properties. Comput Human Behav. 2014;41:190–202. https://doi.org/10.1016/j.chb.2014.09.026.

    Article  Google Scholar 

  21. 21.

    King DL, Haagsma MC, Delfabbro PH, Gradisar M, Griffiths MD. Toward a consensus definition of pathological video-gaming: a systematic review of psychometric assessment tools. Clin Psychol Rev. 2013;33(3):331–42. https://doi.org/10.1016/j.cpr.2013.01.002.

    Article  PubMed  Google Scholar 

  22. 22.

    Pearcy BTD, Roberts LD, McEvoy PM. Psychometric testing of the personal Internet gaming disorder evaluation-9: a new measure designed to assess Internet gaming disorder. Cyberpsychol Behav Soc Netw. 2016;19(5):335–41. https://doi.org/10.1089/cyber.2015.0534.

    Article  PubMed  Google Scholar 

  23. 23.

    Vadlin S, Aslund C, Nilsson KW. Development and content validity of a screening instrument for gaming addiction in adolescents: the Gaming Addiction Identification Test (GAIT). Scand J Psychol. 2015;56(4):458–66. https://doi.org/10.1111/sjop.12196.

    Article  PubMed  Google Scholar 

  24. 24.

    Pontes HM, Kiraly O, Demetrovics Z, Griffiths MD. The conceptualisation and measurement of DSM-5 Internet Gaming Disorder: the development of the IGD-20 Test. PLoS One. 2014;9(10):9. https://doi.org/10.1371/journal.pone.0110137.

    CAS  Article  Google Scholar 

  25. 25.

    Pontes HM, Griffiths MD. Measuring DSM-5 internet gaming disorder: development and validation of a short psychometric scale. Comput Hum Behav. 2015;45:137–43. https://doi.org/10.1016/j.chb.2014.12.006.

    Article  Google Scholar 

  26. 26.

    Kiraly O, Sleczka P, Pontes HM, Urban R, Griffiths MD, Demetrovics Z. Validation of the ten-item Internet Gaming Disorder Test (IGDT-10) and evaluation of the nine DSM-5 Internet Gaming Disorder criteria. Addict Behav. 2017;64:253–60. https://doi.org/10.1016/j.addbeh.2015.11.005.

    Article  PubMed  Google Scholar 

  27. 27.

    Lemmens JS, Valkenburg PM, Gentile DA. The Internet Gaming Disorder Scale. Psychol Assess. 2015;27(2):567–82. https://doi.org/10.1037/pas0000062.

    Article  PubMed  Google Scholar 

  28. 28.

    Zadra S, Bischof G, Besser B, Bischof A, Meyer C, John U, et al. The association between Internet addiction and personality disorders in a general population-based sample. J Behav Addict. 2016;5(4):691–9. https://doi.org/10.1556/2006.5.2016.086.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Maraz A, Kiraly O, Demetrovics Z. Commentary on: are we overpathologizing everyday life? A tenable blueprint for behavioral addiction research: the diagnostic pitfalls of surveys: if you score positive on a test of addiction, you still have a good chance not to be addicted. J Behav Addict. 2015;4(3):151–4. https://doi.org/10.1556/2006.4.2015.026.

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Jeong H, Yim HW, Lee SY, Lee HK, Potenza MN, Kwon JH, et al. Discordance between self-report and clinical diagnosis of Internet gaming disorder in adolescents. Sci Rep. 2018;8:10084. https://doi.org/10.1038/s41598-018-28478-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Bethlehem J. Selection bias in web surveys. Int Stat Rev. 2010;78:161–88. https://doi.org/10.1111/j.1751-5823.2010.00112.x.

    Article  Google Scholar 

  32. 32.

    Greenacre ZA. The importance of selection bias in internet surveys. Open J Stat. 2016;6:ID:67313. https://doi.org/10.4236/ojs.2016.63035.

    Article  Google Scholar 

  33. 33.

    Rumpf HJ, Bischof G, Hapke U, Meyer C, John U. Studies on natural recovery from alcohol dependence: sample selection bias by media solicitation? Addiction. 2000;95(5):765–75.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    • Starcevic V, Billieux J, Schimmenti A. Selfitis and behavioural addiction: a plea for terminological and conceptual rigour. Aust N Z J Psychiatry. 2018;52(10):919–20. https://doi.org/10.1177/0004867418797442 This article highlights to be careful in proposing behavioral addictions.

    Article  PubMed  Google Scholar 

  35. 35.

    Robins LN, Wing J, Wittchen HU. The Composite International Diagnostic Interview: an epidemiological instrument suitable for use in conjunction with different diagnostic systems and in different cultures. Arch Gen Psychiatry. 1988;45:1069–77.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Fineberg NA, Demetrovics Z, Stein DJ, Ioannidis K, Potenza MN, Grunblatt E, et al. Manifesto for a European research network into Problematic Usage of the Internet. Eur Neuropsychopharmacol. 2018;28(11):1232–46. https://doi.org/10.1016/j.euroneuro.2018.08.004.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Vladimir Poznyak is a staff member of the World Health Organization. The views expressed in this publication do not necessarily represent the decisions or policies of the World Health Organization.

Funding

This publication is based upon work from COST Action CA16207 “European Network for Problematic Usage of the Internet,” supported by COST (European Cooperation in Science and Technology: www.cost.eu). Marc Potenza has received support from the Connecticut State Department of Mental Health and Addiction Services, the Connecticut Mental Health Center, the Connecticut Council on Problem Gambling, and the National Center for Responsible Gaming. The funding agencies did not provide input or comment on the content of the manuscript, and the content of the manuscript reflects the contributions and thoughts of the authors and do not necessarily reflect the views of the funding agencies. Zsolt Demetrovics was supported by the Hungarian National Research, Development and Innovation Office (Grant No.: KKP126835).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hans-Jürgen Rumpf.

Ethics declarations

Conflict of Interest

Hans-Jürgen Rumpf, Dominique Brandt, Zsolt Demetrovics, Joël Billieux, Natacha Carragher, Matthias Brand, Henrietta Bowden-Jones, Afarin Rahimi-Movaghar, Sawitri Assanangkornchai, Renata Glavak-Tkalic, Guilherme Borges, Hae-Kook Lee, Florian Rehbein, Naomi A. Fineberg, Karl Mann, Marc N. Potenza, Dan J. Stein, Susumu Higuchi, Daniel King, John B. Saunders, and Vladimir Poznyak declare that they have no conflict of interest with regard to this manuscript.

Naomi Fineberg reports personal fees from Otsuka, Lundbeck, Abbott, Sun Pharma, Taylor and Francis, Elsevier; personal fees and non-financial support from RANZCP, Wiley; grants from NIHR, Wellcome; grants and non-financial support from EU, ECNP, Shire; non-financial support from BAP, WHO, CINP, ISAD, RCPsych, International College Of OC Spectrum Disorders, IFMAD, MHRA; and others from Oxford University Press, all outside the submitted work.

Marc Potenza has received financial support or compensation for the following: Dr. Potenza has consulted for and advised RiverMend Health, Opiant/Lakelight Therapeutics, and Jazz Pharmaceuticals; has received unrestricted research support from Mohegan Sun Casino and grant support from the National Center for Responsible Gaming; and has consulted for legal and gambling entities on issues related to impulse control disorders.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on ICD-11

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rumpf, HJ., Brandt, D., Demetrovics, Z. et al. Epidemiological Challenges in the Study of Behavioral Addictions: a Call for High Standard Methodologies. Curr Addict Rep 6, 331–337 (2019). https://doi.org/10.1007/s40429-019-00262-2

Download citation

Keywords

  • Behavioral addiction
  • Epidemiology
  • Surveys
  • Assessment
  • Recommendation
  • Random error
  • Systematic error