Skip to main content

Advertisement

Log in

Revisiting the Consequences of Adolescent Cannabinoid Exposure Through the Lens of the Endocannabinoid System

  • Cannabis (D D'Souza and P Skosnik, Section Editors)
  • Published:
Current Addiction Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Adolescence is a period of culmination during which there is a neurodevelopment through processes such as synaptic potentiation and pruning, myelination, and improved connectivity. Recent studies posit a vital role of endocannabinoid signaling in regulating and fine-tuning these processes. Adolescence is also a period of heightened vulnerability for exposure to exogenous cannabinoids (cannabis) which can potentially disrupt the regulatory function of endocannabinoids.

Recent Findings

While studies in animal models provide more compelling evidence for residual and persistent effects of cannabinoid exposure, human studies present a mixed picture, specifically for the cognitive consequences of adolescent cannabinoid exposure. Few studies have addressed the reward and psychosis-related consequences of early cannabinoid exposure. We review the recent advances in the literature on the endocannabinoid system, its role in neurodevelopment, the consequences of adolescent cannabinoid exposure, and plausible links among these. Further, we examine the epigenetic mechanisms altered by cannabinoids as a potential molecular mechanism underlying the persistent consequences of adolescent exposure.

Summary

Attitudes towards and patterns of cannabis use among adolescents are rapidly changing as is the landscape of its legal status. The conflicting results between pre-clinical and human studies as well as a lack of understanding of underlying mechanisms call for further research on the residual and persistent consequences of adolescent cannabis exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Crone EA, Dahl RE. Understanding adolescence as a period of social-affective engagement and goal flexibility. Nat Rev Neurosci. 2012;13(9):636–50.

    Article  CAS  PubMed  Google Scholar 

  2. Sarvet AL, Wall MM, Fink DS, Greene E, Le A, Boustead AE, et al. Medical marijuana laws and adolescent marijuana use in the United States: a systematic review and meta-analysis. Addiction. 2018;113(6):1003–16.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ashton C. Pharmacology and effects of cannabis: a brief review. Br J Psychiatry. 2001;178(1):101–6.

    Article  CAS  PubMed  Google Scholar 

  4. ElSohly M, Gul W. Constituents of cannabis sativa. In: Pertwee R, editor. Handbook of cannabis. London: Oxford University Press; 2014. p. 3–22.

    Chapter  Google Scholar 

  5. D’Souza D. Cannabinoids and psychosis. Int Rev Neurobiol. 2007;78:289–326.

    Article  PubMed  CAS  Google Scholar 

  6. Colizzi M, Bhattacharyya S. Does cannabis composition matter? Differential effects of delta-9-tetrahydrocannabinol and cannabidiol on human cognition. Curr Addict Rep. 2017;4(2):62–74.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sherif M, Radhakrishnan R, D'Souza D, Ranganathan M. Human laboratory studies on cannabinoids and psychosis. Biol Psychiatry. 2016;79(7):526–38.

    Article  CAS  PubMed  Google Scholar 

  8. ElSohly M, Ross S, Mehmedic Z, Arafat R, Yi B, Banahan B. Potency trends of delta9-THC and other cannabinoids in confiscated marijuana from 1980-1997. Forensic Sci. 2000;45(1):24–30.

    CAS  Google Scholar 

  9. ElSohly M, Mehmedic Z, Foster S, Gon C, Chandra S, Church J. Changes in cannabis potency over the last 2 decades (1995-2014): analysis of current data in the United States. Biol Psychiatry. 2016;79(7):613–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Potter D, Clark P, Brown M. Potency of delta 9-THC and other cannabinoids in cannabis in England in 2005: implications for psychoactivity and pharmacology. J Forensic Sci. 2008;53(1):90–4.

    Article  PubMed  Google Scholar 

  11. Chan G, Hall W, Freeman T, Ferris J, Kelly A, Winstock A. User characteristics and effect profile of butane hash oil: an extremely high-potency cannabis concentrate. Drug Alcohol Depend. 2017;178:32–8.

    Article  CAS  PubMed  Google Scholar 

  12. Spaderna M, Addy P, D'Souza D. Spicing things up: synthetic cannabinoids. Psychopharmacology. 2013;228(4):525–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wiley J, Marusich J, Thomas B. Combination chemistry: structure-activity relationships of novel psychoactive cannabinoids. Curr Top Behav Neurosci. 2017;32:231–48.

    Article  PubMed  CAS  Google Scholar 

  14. Fattore L. Synthetic cannabinoids-further evidence supporting the relationship between cannabinoids and psychosis. Biol Psychiatry. 2016;79(7):539–48.

    Article  CAS  PubMed  Google Scholar 

  15. Ford B, Tai S, Fantegrossi W, Prather P. Synthetic pot: not your grandfather’s marijuana. Trends Pharmacol Sci. 2017;38(3):257–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tai S, Fantegrossi W. Pharmacological and toxicological effects of synthetic cannabinoids and their metabolites. Curr Top Behav Neurosci. 2017;32:249–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tait RJ, Caldicott D, Mountain D, Hill SL, Lenton S. A systematic review of adverse events arising from the use of synthetic cannabinoids and their associated treatment. Clin Toxicol. 2016;54(1):1–13. https://doi.org/10.3109/15563650.2015.1110590.

  18. Gupta A, D’Souza D. Synthetic cannabinoids: the pharmacokinetics and pharmacodynamics of spice and other synthetic cannabinoids. In: Wolff K, White J, Karch S, editors. The SAGE handbook of drug & alcohol studies: biological approaches. 2. Thousand Oaks: SAGE Publications Ltd.; 2016.

    Google Scholar 

  19. Murray R, Quigley H, Quattrone D, Englund A, Di Forti M. Traditional marijuana, high-potency cannabis and synthetic cannabinoids: increasing risk for psychosis. World Psychiatry. 2016;15(3):195–204.

    Article  PubMed  PubMed Central  Google Scholar 

  20. van Amsterdam J, Brunt T, van den Brink W. The adverse health effects of synthetic cannabinoids with emphasis on psychosis-like effects. J Psychopharmacol. 2015;29(3):254–63.

    Article  PubMed  CAS  Google Scholar 

  21. Abbot NC, Stead LF, White AR, Barnes J, Ernst E. Hypnotherapy for smoking cessation. Cochrane Database Syst Rev. 2000;2:CD001008.

    Google Scholar 

  22. Johnson RM, Fairman B, Gilreath T, Xuan Z, Rothman EF, Parnham T, et al. Past 15-year trends in adolescent marijuana use: differences by race/ethnicity and sex. Drug Alcohol Depend. 2015;155:8–15.

    Article  PubMed  PubMed Central  Google Scholar 

  23. • Johnston LD, Miech RA, O’Malley PM, Bachman JG, Schulenberg JE, Patrick ME. Monitoring the future national survey results on drug use: 1975-2017: overview, key findings on adolescent drug use. Ann Arbor: Institute for Social Research, The University of Michigan; 2018. Recent epidemiolocial data on adolescent drug use including cannabinoids.

    Book  Google Scholar 

  24. Carliner H, Brown QL, Sarvet AL, Hasin DS. Cannabis use, attitudes, and legal status in the U.S.: a review. Prev Med. 2017;104:13–23.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wen H, Hockenberry JM, Druss BG. The effect of medical marijuana laws on marijuana-related attitude and perception among US adolescents and young adults. Prev Sci. 2018;1–9. https://doi.org/10.1007/s11121-018-0903-8.

  26. Connell CM, Gilreath TD, Aklin WM, Brex RA. Social-ecological influences on patterns of substance use among non-metropolitan high school students. Am J Community Psychol. 2010;45(1–2):36–48.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gruenewald PJ, Remer LG, LaScala EA. Testing a social ecological model of alcohol use: the California 50-city study. Addiction. 2014;109(5):736–45.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lu HC, Mackie K. An introduction to the endogenous cannabinoid system. Biol Psychiatry. 2016;79(7):516–25.

    Article  CAS  PubMed  Google Scholar 

  29. Di Marzo V, De Petrocellis L. Why do cannabinoid receptors have more than one endogenous ligand? Philos Trans R Soc Lond Ser B Biol Sci. 2012;367(1607):3216–28.

    Article  CAS  Google Scholar 

  30. Zou S, Kumar U. Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19030833.

  31. Harkany T, Guzman M, Galve-Roperh I, Berghuis P, Devi LA, Mackie K. The emerging functions of endocannabinoid signaling during CNS development. Trends Pharmacol Sci. 2007;28(2):83–92.

    Article  CAS  PubMed  Google Scholar 

  32. Heng L, Beverley JA, Steiner H, Tseng KY. Differential developmental trajectories for CB1 cannabinoid receptor expression in limbic/associative and sensorimotor cortical areas. Synapse. 2011;65(4):278–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ellgren M, Artmann A, Tkalych O, Gupta A, Hansen HS, Hansen SH, et al. Dynamic changes of the endogenous cannabinoid and opioid mesocorticolimbic systems during adolescence: THC effects. Eur Neuropsychopharmacol. 2008;18(11):826–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. •• Meyer HC, Lee FS, Gee DG. The role of the endocannabinoid system and genetic variation in adolescent brain development. Neuropsychopharmacology. 2018;(1):43, 21–33 Recent review on the role of the ECS on frotolimbic cortical maturation during adolescence.

  35. Fride E. The endocannabinoid-CB receptor system: importance for development and in pediatric disease. Neuro Endocrinol Lett. 2004;25(1–2):24–30.

    CAS  PubMed  Google Scholar 

  36. Anavi-Goffer S, Mulder J. The polarised life of the endocannabinoid system in CNS development. Chembiochem. 2009;10(10):1591–8.

    Article  CAS  PubMed  Google Scholar 

  37. Spear LP. Adolescent neurodevelopment. J Adolesc Health. 2013;52(2 Suppl 2):S7–13.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sturman DA, Moghaddam B. The neurobiology of adolescence: changes in brain architecture, functional dynamics, and behavioral tendencies. Neurosci Biobehav Rev. 2011;35(8):1704–12.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fortin DA, Levine ES. Differential effects of endocannabinoids on glutamatergic and GABAergic inputs to layer 5 pyramidal neurons. Cereb Cortex. 2007;17(1):163–74.

    Article  PubMed  Google Scholar 

  40. Rubino T, Realini N, Braida D, Alberio T, Capurro V, Vigano D, et al. The depressive phenotype induced in adult female rats by adolescent exposure to THC is associated with cognitive impairment and altered neuroplasticity in the prefrontal cortex. Neurotox Res. 2009;15(4):291–302.

    Article  CAS  PubMed  Google Scholar 

  41. Rubino T, Realini N, Braida D, Guidi S, Capurro V, Vigano D, et al. Changes in hippocampal morphology and neuroplasticity induced by adolescent THC treatment are associated with cognitive impairment in adulthood. Hippocampus. 2009;19(8):763–72.

    Article  CAS  PubMed  Google Scholar 

  42. Zamberletti E, Beggiato S, Steardo L Jr, Prini P, Antonelli T, Ferraro L, et al. Alterations of prefrontal cortex GABAergic transmission in the complex psychotic-like phenotype induced by adolescent delta-9-tetrahydrocannabinol exposure in rats. Neurobiol Dis. 2014;63:35–47.

    Article  CAS  PubMed  Google Scholar 

  43. Zamberletti E, Gabaglio M, Grilli M, Prini P, Catanese A, Pittaluga A, et al. Long-term hippocampal glutamate synapse and astrocyte dysfunctions underlying the altered phenotype induced by adolescent THC treatment in male rats. Pharmacol Res. 2016;111:459–70.

    Article  CAS  PubMed  Google Scholar 

  44. Renard J, Szkudlarek HJ, Kramar CP, Jobson CEL, Moura K, Rushlow WJ, et al. Adolescent THC exposure causes enduring prefrontal cortical disruption of GABAergic inhibition and dysregulation of sub-cortical dopamine function. Sci Rep. 2017;7(1):11420.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Lisdahl KM, Wright NE, Kirchner-Medina C, Maple KE, Shollenbarger S. Considering cannabis: the effects of regular cannabis use on neurocognition in adolescents and young adults. Curr Addict Rep. 2014;1(2):144–56.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gilman JM, Kuster JK, Lee S, Lee MJ, Kim BW, Makris N, et al. Cannabis use is quantitatively associated with nucleus accumbens and amygdala abnormalities in young adult recreational users. J Neurosci. 2014;34(16):5529–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Battistella G, Fornari E, Annoni JM, Chtioui H, Dao K, Fabritius M, et al. Long-term effects of cannabis on brain structure. Neuropsychopharmacology. 2014;39(9):2041–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Filbey FM, Aslan S, Calhoun VD, Spence JS, Damaraju E, Caprihan A, et al. Long-term effects of marijuana use on the brain. Proc Natl Acad Sci U S A. 2014;111(47):16913–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schacht JP, Hutchison KE, Filbey FM. Associations between cannabinoid receptor-1 (CNR1) variation and hippocampus and amygdala volumes in heavy cannabis users. Neuropsychopharmacology. 2012;37(11):2368–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. George T, Vaccarino F. Substance abuse in Canada: the effects of cannabis use during adolescence. Canadian Centre on Substance Abuse: Ottawa, ON; 2015.

    Google Scholar 

  51. Gruber SA, Dahlgren MK, Sagar KA, Gonenc A, Lukas SE. Worth the wait: effects of age of onset of marijuana use on white matter and impulsivity. Psychopharmacology. 2014;231(8):1455–65.

    Article  CAS  PubMed  Google Scholar 

  52. Bava S, Frank LR, McQueeny T, Schweinsburg BC, Schweinsburg AD, Tapert SF. Altered white matter microstructure in adolescent substance users. Psychiatry Res. 2009;173(3):228–37.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tapert SF, Schweinsburg AD, Drummond SP, Paulus MP, Brown SA, Yang TT, et al. Functional MRI of inhibitory processing in abstinent adolescent marijuana users. Psychopharmacology. 2007;194(2):173–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Padula CB, Schweinsburg AD, Tapert SF. Spatial working memory performance and fMRI activation interaction in abstinent adolescent marijuana users. Psychol Addict Behav. 2007;21(4):478–87.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Andra M, Smith RALZ, Anderson CD, Longo CA, Cameron I, Hogan MJ, et al. Impact of marijuana on response inhibition: an fMRI study in young adults. J Behav Brain Sci. 2011;1(3):124–33.

    Article  Google Scholar 

  56. Broyd SJ, van Hell HH, Beale C, Yucel M, Solowij N. Acute and chronic effects of cannabinoids on human cognition-a systematic review. Biol Psychiatry. 2016;79(7):557–67.

    Article  CAS  PubMed  Google Scholar 

  57. Ranganathan M, D'Souza DC. The acute effects of cannabinoids on memory in humans: a review. Psychopharmacology. 2006;188(4):425–44.

    Article  CAS  PubMed  Google Scholar 

  58. Curran HV, Freeman TP, Mokrysz C, Lewis DA, Morgan CJ, Parsons LH. Keep off the grass? Cannabis, cognition and addiction. Nat Rev Neurosci. 2016;17(5):293–306.

    Article  CAS  PubMed  Google Scholar 

  59. Meier MH, Caspi A, Ambler A, Harrington H, Houts R, Keefe RS, et al. Persistent cannabis users show neuropsychological decline from childhood to midlife. Proc Natl Acad Sci U S A. 2012;109(40):E2657–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. •• Scott JC, Slomiak ST, Jones JD, Rosen AFG, Moore TM, Gur RC. Association of cannabis with cognitive functioning in adolescents and young adults: a systematic review and meta-analysis. JAMA Psychiatry. 2018;75(6):585–95 A recent meta analysis on the of studies on cognitive consequences of cannabinoid exposure.

    Article  PubMed  PubMed Central  Google Scholar 

  61. •• Meier MH, Caspi A, Danese A, Fisher HL, Houts R, Arseneault L, et al. Associations between adolescent cannabis use and neuropsychological decline: a longitudinal co-twin control study. Addiction. 2018;113(2):257–65 Longitudinal twin study on the cognitive consequences of adolescnet cannabis use.

    Article  PubMed  Google Scholar 

  62. Walker DM, Bell MR, Flores C, Gulley JM, Willing J, Paul MJ. Adolescence and reward: making sense of neural and behavioral changes amid the chaos. J Neurosci. 2017;37(45):10855–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Parsons LH, Hurd YL. Endocannabinoid signalling in reward and addiction. Nat Rev Neurosci. 2015;16(10):579–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Serrano A, Parsons LH. Endocannabinoid influence in drug reinforcement, dependence and addiction-related behaviors. Pharmacol Ther. 2011;132(3):215–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamaguchi K, Kandel DB. Patterns of drug use from adolescence to young adulthood: III. Predictors of progression. Am J Public Health. 1984;74(7):673–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pistis M, Perra S, Pillolla G, Melis M, Muntoni AL, Gessa GL. Adolescent exposure to cannabinoids induces long-lasting changes in the response to drugs of abuse of rat midbrain dopamine neurons. Biol Psychiatry. 2004;56(2):86–94.

    Article  CAS  PubMed  Google Scholar 

  67. Otten R, Mun CJ, Dishion TJ. The social exigencies of the gateway progression to the use of illicit drugs from adolescence into adulthood. Addict Behav. 2017;73:144–50.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Weinberger AH, Platt J, Goodwin RD. Is cannabis use associated with an increased risk of onset and persistence of alcohol use disorders? A three-year prospective study among adults in the United States. Drug Alcohol Depend. 2016;161:363–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nkansah-Amankra S, Minelli M. “Gateway hypothesis” and early drug use: additional findings from tracking a population-based sample of adolescents to adulthood. Prev Med Rep. 2016;4:134–41.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Jager G, Block RI, Luijten M, Ramsey NF. Cannabis use and memory brain function in adolescent boys: a cross-sectional multicenter functional magnetic resonance imaging study. J Am Acad Child Adolesc Psychiatry. 2010;49(6):561–72 72 e1–3.

    PubMed  PubMed Central  Google Scholar 

  71. Levine A, Huang Y, Drisaldi B, Griffin EA Jr, Pollak DD, Xu S, et al. Molecular mechanism for a gateway drug: epigenetic changes initiated by nicotine prime gene expression by cocaine. Sci Transl Med. 2011;3(107):107ra9.

    Article  CAS  Google Scholar 

  72. Ranganathan M, Skosnik PD, D’Souza DC. Marijuana and madness: associations between cannabinoids and psychosis. Biol Psychiatry. 2016;79(7):511–3.

    Article  PubMed  Google Scholar 

  73. Marconi A, Di Forti M, Lewis CM, Murray RM, Vassos E. Meta-analysis of the association between the level of cannabis use and risk of psychosis. Schizophr Bull. 2016;42(5):1262–9.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Varese F, Smeets F, Drukker M, Lieverse R, Lataster T, Viechtbauer W, et al. Childhood adversities increase the risk of psychosis: a meta-analysis of patient-control, prospective- and cross-sectional cohort studies. Schizophr Bull. 2012;38(4):661–71.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Breivogel CS, Sim-Selley LJ. Basic neuroanatomy and neuropharmacology of cannabinoids. Int Rev Psychiatry. 2009;21(2):113–21.

    Article  PubMed  Google Scholar 

  76. Pope C, Mechoulam R, Parsons L. Endocannabinoid signaling in neurotoxicity and neuroprotection. Neurotoxicology. 2010;31(5):562–71.

    Article  CAS  PubMed  Google Scholar 

  77. Kiluk BD, Carroll KM. New developments in behavioral treatments for substance use disorders. Curr Psychiatry Rep. 2013;15(12):420.

    Article  PubMed  Google Scholar 

  78. Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol. 2008;153(2):199–215.

    Article  CAS  PubMed  Google Scholar 

  79. Deichmann U. Epigenetics: the origins and evolution of a fashionable topic. Dev Biol. 2016;416(1):249–54.

    Article  CAS  PubMed  Google Scholar 

  80. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7):781–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Szutorisz H, Hurd YL. Epigenetic effects of cannabis exposure. Biol Psychiatry. 2016;79(7):586–94.

    Article  CAS  PubMed  Google Scholar 

  82. • Szutorisz H, Hurd YL. High times for cannabis: epigenetic imprint and its legacy on brain and behavior. Neurosci Biobehav Rev. 2018;85:93–101 A recent review detailing the epigenetic effects of cannabis exposure in human and animal model studies.

    Article  CAS  PubMed  Google Scholar 

  83. Szutorisz H, DiNieri JA, Sweet E, Egervari G, Michaelides M, Carter JM, et al. Parental THC exposure leads to compulsive heroin-seeking and altered striatal synaptic plasticity in the subsequent generation. Neuropsychopharmacology. 2014;39(6):1315–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Watson CT, Szutorisz H, Garg P, Martin Q, Landry JA, Sharp AJ, et al. Genome-wide DNA methylation profiling reveals epigenetic changes in the rat nucleus accumbens associated with cross-generational effects of adolescent THC exposure. Neuropsychopharmacology. 2015;40(13):2993–3005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Szutorisz H, Egervari G, Sperry J, Carter JM, Hurd YL. Cross-generational THC exposure alters the developmental sensitivity of ventral and dorsal striatal gene expression in male and female offspring. Neurotoxicol Teratol. 2016;58:107–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tomasiewicz HC, Jacobs MM, Wilkinson MB, Wilson SP, Nestler EJ, Hurd YL. Proenkephalin mediates the enduring effects of adolescent cannabis exposure associated with adult opiate vulnerability. Biol Psychiatry. 2012;72(10):803–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. •• Prini P, Rusconi F, Zamberletti E, Gabaglio M, Penna F, Fasano M, et al. Adolescent THC exposure in female rats leads to cognitive deficits through a mechanism involving chromatin modifications in the prefrontal cortex. J Psychiatry Neurosci. 2018;43(2):87–101 Animal model study linking adolescent cannabinoid exposure—cognitive dysfunction—epigenetic mechanisms.

    Article  PubMed  Google Scholar 

  88. Prini P, Penna F, Sciuccati E, Alberio T, Rubino T. Chronic Δ9-THC exposure differently affects histone modifications in the adolescent and adult rat brain. Int J Mol Sci. 18(10). https://doi.org/10.3390/ijms18102094.

  89. Tylee DS, Kawaguchi DM, Glatt SJ. On the outside, looking in: a review and evaluation of the comparability of blood and brain “-omes”. Am J Med Genet B Neuropsychiatr Genet. 2013;162B(7):595–603.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Harsimar Kaur for the assistance during manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Cyril D’Souza.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cannabis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh, S., Vidya, K., Rashid, A.A. et al. Revisiting the Consequences of Adolescent Cannabinoid Exposure Through the Lens of the Endocannabinoid System. Curr Addict Rep 5, 418–427 (2018). https://doi.org/10.1007/s40429-018-0233-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40429-018-0233-8

Keywords

Navigation