Skip to main content

Advertisement

Log in

Neurobiology of Craving: Current Findings and New Directions

  • Adolescent/Young Adult Addiction (T Chung, Section Editor)
  • Published:
Current Addiction Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

This review seeks to provide an update on the current literature on craving and its underlying neurobiology, as it pertains to alcohol and drug addiction.

Recent Findings

Studies on craving neurobiology suggest that the brain networks activated by conditioned cues in alcohol- and drug-dependent populations extend far beyond the traditional mesolimbic dopamine system and suggest that the early neurobiological theories of addiction, which heavily relied on dopamine release into the nucleus accumbens as the primary mechanism driving cue-induced craving and drug-seeking behavior, are incomplete. Ongoing studies will advance our understanding of the neurobiological underpinnings of addiction and drug craving by identifying novel brain regions associated with responses to conditioned cues that may be specific to humans, or at least primates, due to these brain areas’ involvement in higher cognitive processes.

Summary

This review highlights recent advances and future directions in leveraging the neurobiology of craving as a translational phenotype for understanding addiction etiology and informing treatment development. The complexity of craving and its underlying neurocircuitry is evident and divergent methods of eliciting craving (i.e., cues, stress, and alcohol administration) may produce divergent findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Drummond DC. Theories of drug craving, ancient and modern. Addiction. 2001;96(1):33–46. https://doi.org/10.1080/09652140020016941.

    Article  PubMed  CAS  Google Scholar 

  2. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-IV-TR. Washington, DC: American Psychiatric Association; 2000.

    Google Scholar 

  3. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5(5th ed.). Arlington, VA: American Psychiatric Association.

  4. de Bruijn C, van den Brink W, de Graaf R, Vollebergh WA. Alcohol abuse and dependence criteria as predictors of a chronic course of alcohol use disorders in the general population. Alcohol Alcohol. 2005;40(5):441–6. https://doi.org/10.1093/alcalc/agh183.

    Article  PubMed  Google Scholar 

  5. Foroud T, Wetherill LF, Liang T, Dick DM, Hesselbrock V, Kramer J, et al. Association of alcohol craving with alpha-synuclein (SNCA). Alcohol Clin Exp Res. 2007;31(4):537–45. https://doi.org/10.1111/j.1530-0277.2007.00337.x.

    Article  PubMed  CAS  Google Scholar 

  6. Hutchison KE, McGeary J, Smolen A, Bryan A, Swift RM. The DRD4 VNTR polymorphism moderates craving after alcohol consumption. Health Psychol. 2002;21(2):139–46.

    Article  PubMed  Google Scholar 

  7. Filbey FM, Ray L, Smolen A, Claus ED, Audette A, Hutchison KE. Differential neural response to alcohol priming and alcohol taste cues is associated with DRD4 VNTR and OPRM1 genotypes. Alcohol Clin Exp Res. 2008;32(7):1113–23. https://doi.org/10.1111/j.1530-0277.2008.00692.x.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mason BJ, Light JM, Williams LD, Drobes DJ. Proof-of-concept human laboratory study for protracted abstinence in alcohol dependence: effects of gabapentin. Addict Biol. 2009;14(1):73–83. https://doi.org/10.1111/j.1369-1600.2008.00133.x.

    Article  PubMed  CAS  Google Scholar 

  9. Hutchison KE, Ray L, Sandman E, Rutter MC, Peters A, Davidson D, et al. The effect of olanzapine on craving and alcohol consumption. Neuropsychopharmacology. 2006;31(6):1310–7. https://doi.org/10.1038/sj.npp.1300917.

    Article  PubMed  CAS  Google Scholar 

  10. Miranda R Jr, MacKillop J, Monti PM, Rohsenow DJ, Tidey J, Gwaltney C, et al. Effects of topiramate on urge to drink and the subjective effects of alcohol: a preliminary laboratory study. Alcohol Clin Exp Res. 2008;32(3):489–97. https://doi.org/10.1111/j.1530-0277.2007.00592.x.

    Article  PubMed  CAS  Google Scholar 

  11. Monti PM, Tidey J, Czachowski CL, Grant KA, Rohsenow DJ, Sayette M, et al. Building bridges: the transdisciplinary study of craving from the animal laboratory to the lamppost. Alcohol Clin Exp Res. 2004;28(2):279–87.

    Article  PubMed  Google Scholar 

  12. Oslin DW, Cary M, Slaymaker V, Colleran C, Blow FC. Daily ratings measures of alcohol craving during an inpatient stay define subtypes of alcohol addiction that predict subsequent risk for resumption of drinking. Drug Alcohol Depend. 2009;103(3):131–6. https://doi.org/10.1016/j.drugalcdep.2009.03.009.

    Article  PubMed  Google Scholar 

  13. Bujarski S, Roche DJ, Sheets ES, Krull JL, Guzman I, Ray LA. Modeling naturalistic craving, withdrawal, and affect during early nicotine abstinence: a pilot ecological momentary assessment study. Exp Clin Psychopharmacol. 2015;23(2):81–9. https://doi.org/10.1037/a0038861.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ray LA. Stress-induced and cue-induced craving for alcohol in heavy drinkers: preliminary evidence of genetic moderation by the OPRM1 and CRH-BP genes. Alcohol Clin Exp Res. 2011;35(1):166–74. https://doi.org/10.1111/j.1530-0277.2010.01333.x.

    Article  PubMed  Google Scholar 

  15. Sayette MA, Monti PM, Rohsenow DJ, Gulliver SB, Colby SM, Sirota AD, et al. The effects of cue exposure on reaction time in male alcoholics. J Stud Alcohol. 1994;55(5):629–33.

    Article  PubMed  CAS  Google Scholar 

  16. Sayette MA, Hufford MR. Effects of cue exposure and deprivation on cognitive resources in smokers. J Abnorm Psychol. 1994;103(4):812–8.

    Article  PubMed  CAS  Google Scholar 

  17. Sayette MA, Loewenstein G, Kirchner TR, Travis T. Effects of smoking urge on temporal cognition. Psychol Addict Behav. 2005;19(1):88–93. https://doi.org/10.1037/0893-164X.19.1.88.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Marlatt G. Addiction, mindfulness, and acceptance. In: Hayes S, Jacobson NS, Follette VM, Dougher MJ, editors. Acceptance and change: content and context in psychotherapy. Reno: Context Press; 1994. p. 175–97.

    Google Scholar 

  19. Bechara A, Martin EM. Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology. 2004;18(1):152–62. https://doi.org/10.1037/0894-4105.18.1.152.

    Article  PubMed  Google Scholar 

  20. Kavanagh DJ, Andrade J, May J. Imaginary relish and exquisite torture: the elaborated intrusion theory of desire. Psychol Rev. 2005;112(2):446–67. https://doi.org/10.1037/0033-295X.112.2.446.

    Article  PubMed  Google Scholar 

  21. May J, Andrade J, Panabokke N, Kavanagh D. Images of desire: cognitive models of craving. Memory. 2004;12(4):447–61.

    Article  PubMed  Google Scholar 

  22. Smeets E, Roefs A, Jansen A. Experimentally induced chocolate craving leads to an attentional bias in increased distraction but not in speeded detection. Appetite. 2009;53:370–5. https://doi.org/10.1016/j.appet.2009.07.020.

    Article  PubMed  Google Scholar 

  23. Rosenberg H. Clinical and laboratory assessment of the subjective experience of drug craving. Clin Psychol Rev. 2009;29(6):519–34. https://doi.org/10.1016/j.cpr.2009.06.002.

    Article  PubMed  Google Scholar 

  24. Moak DH, Anton RF, Latham PK. Further validation of the Obsessive-Compulsive Drinking Scale (OCDS). Relationship to alcoholism severity. Am J Addict. 1998;7(1):14–23.

    PubMed  CAS  Google Scholar 

  25. MacKillop J. Factor structure of the alcohol urge questionnaire under neutral conditions and during a cue-elicited urge state. Alcohol Clin Exp Res. 2006;30(8):1315–21. https://doi.org/10.1111/j.1530-0277.2006.00159.x.

    Article  PubMed  Google Scholar 

  26. Monti PM, Binkoff JA, Abrams DB, Zwick WR, Nirenberg TD, Liepman MR. Reactivity of alcoholics and nonalcoholics to drinking cues. J Abnorm Psychol. 1987;96(2):122–6.

    Article  PubMed  CAS  Google Scholar 

  27. Payne TJ, Rychtarik RG, Rappaport NB, Smith PO, Etscheidt M, Brown TA, et al. Reactivity to alcohol-relevant beverage and imaginal cues in alcoholics. Addict Behav. 1992;17(3):209–17.

    Article  PubMed  CAS  Google Scholar 

  28. Rohsenow DJ, Monti PM, Rubonis AV, Sirota AD, Niaura RS, Colby SM, et al. Cue reactivity as a predictor of drinking among male alcoholics. J Consult Clin Psychol. 1994;62(3):620–6.

    Article  PubMed  CAS  Google Scholar 

  29. Henry EA, Kaye JT, Bryan AD, Hutchison KE, Ito TA. Cannabis cue reactivity and craving among never, infrequent and heavy cannabis users. Neuropsychopharmacology. 2014;39(5):1214–21. https://doi.org/10.1038/npp.2013.324.

    Article  PubMed  Google Scholar 

  30. Ray LA, Bujarski S, Courtney KE, Moallem NR, Lunny K, Roche D, et al. The effects of naltrexone on subjective response to methamphetamine in a clinical sample: a double-blind, placebo-controlled laboratory study. Neuropsychopharmacology. 2015;40(10):2347–56. https://doi.org/10.1038/npp.2015.83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sobik L, Hutchison K, Craighead L. Cue-elicited craving for food: a fresh approach to the study of binge eating. Appetite. 2005;44(3):253–61. https://doi.org/10.1016/j.appet.2004.12.001.

    Article  PubMed  Google Scholar 

  32. Ray LA, Hutchison KE, Bryan A. Psychosocial predictors of treatment outcome, dropout, and change processes in a pharmacological clinical trial for alcohol dependence. Addictive Disorders and Their Treatment. 2006;5(4):179–90.

    Article  Google Scholar 

  33. O’Brien CP, Childress AR, McLellan T, Ehrman R. Integrating systemic cue exposure with standard treatment in recovering drug dependent patients. Addict Behav. 1990;15(4):355–65.

    Article  PubMed  Google Scholar 

  34. Rodd ZA, Bell RL, Sable HJ, Murphy JM, McBride WJ. Recent advances in animal models of alcohol craving and relapse. Pharmacol Biochem Behav. 2004;79(3):439–50. https://doi.org/10.1016/j.pbb.2004.08.018.

    Article  PubMed  CAS  Google Scholar 

  35. Shiffman S, Gwaltney CJ, Balabanis MH, Liu KS, Paty JA, Kassel JD, et al. Immediate antecedents of cigarette smoking: an analysis from ecological momentary assessment. J Abnorm Psychol. 2002;111(4):531–45.

    Article  PubMed  Google Scholar 

  36. Litt MD, Cooney NL, Morse P. Reactivity to alcohol-related stimuli in the laboratory and in the field: predictors of craving in treated alcoholics. Addiction. 2000;95(6):889–900.

    Article  PubMed  CAS  Google Scholar 

  37. Tidey JW, Monti PM, Rohsenow DJ, Gwaltney CJ, Miranda R Jr, McGeary JE, et al. Moderators of naltrexone’s effects on drinking, urge, and alcohol effects in non-treatment-seeking heavy drinkers in the natural environment. Alcohol Clin Exp Res. 2008;32(1):58–66. https://doi.org/10.1111/j.1530-0277.2007.00545.x.

    Article  PubMed  CAS  Google Scholar 

  38. Monti PM. Translational research on craving: promises, problems, and potential. Baltimore: Research Society on Alcoholism. MD2006

  39. Ray LA, Miranda R, Tidey J, McGeary J, MacKillop J, Gwaltney C et al. Polymorphisms of the mu-opioid receptor and dopamine d4 receptor genes and subjective responses to alcohol in the natural environment. J Abnorm Psychol. 2010;119(1):115–25. https://doi.org/10.1037/a0017550.

  40. Ramirez J, Miranda R Jr. Alcohol craving in adolescents: bridging the laboratory and natural environment. Psychopharmacology. 2014;231(8):1841–51. https://doi.org/10.1007/s00213-013-3372-6.

    Article  PubMed  CAS  Google Scholar 

  41. •• Courtney KE, Schacht JP, Hutchison K, Roche DJ, Ray LA. Neural substrates of cue reactivity: association with treatment outcomes and relapse. Addict Biol. 2016;21(1):3–22. https://doi.org/10.1111/adb.12314. This manuscript provides a critical review of the neural substrates of cue reactivity in alcohol and drug addiction based on the available human neuroimaging literature.

    Article  PubMed  Google Scholar 

  42. Seo D, Sinha R. The neurobiology of alcohol craving and relapse. Handb Clin Neurol. 2014;125:355–68. https://doi.org/10.1016/b978-0-444-62619-6.00021-5.

    Article  PubMed  Google Scholar 

  43. Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry. 2005;162(8):1403–13. https://doi.org/10.1176/appi.ajp.162.8.1403.

    Article  PubMed  Google Scholar 

  44. Koob GF, Le Moal M. Addiction and the brain antireward system. Annu Rev Psychol. 2008;59:29–53. https://doi.org/10.1146/annurev.psych.59.103006.093548.

    Article  PubMed  Google Scholar 

  45. Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM. Subsecond dopamine release promotes cocaine seeking. Nature. 2003;422(6932):614–8. https://doi.org/10.1038/nature01476.

    Article  PubMed  CAS  Google Scholar 

  46. Robinson TE, Berridge KC. Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363(1507):3137–46. https://doi.org/10.1098/rstb.2008.0093.

    Article  Google Scholar 

  47. Berridge KC, Robinson TE, Aldridge JW. Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr Opin Pharmacol. 2009;9(1):65–73. https://doi.org/10.1016/j.coph.2008.12.014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 1993;18(3):247–91.

    Article  PubMed  CAS  Google Scholar 

  49. McClernon FJ, Hutchison KE, Rose JE, Kozink RV. DRD4 VNTR polymorphism is associated with transient fMRI-BOLD responses to smoking cues. Psychopharmacology. 2007;194(4):433–41. https://doi.org/10.1007/s00213-007-0860-6.

    Article  PubMed  CAS  Google Scholar 

  50. Courtney KE, Ghahremani DG, Ray LA. The effects of pharmacological opioid blockade on neural measures of drug cue-reactivity in humans. Neuropsychopharmacology. 2016;41(12):2872–81. https://doi.org/10.1038/npp.2016.99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Everitt BJ, Robbins TW. From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci Biobehav Rev. 2013;37(9 Pt A):1946–54. https://doi.org/10.1016/j.neubiorev.2013.02.010.

    Article  PubMed  Google Scholar 

  52. Kalivas PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci. 2009;10(8):561–72. https://doi.org/10.1038/nrn2515.

    Article  PubMed  CAS  Google Scholar 

  53. •• Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217–38. https://doi.org/10.1038/npp.2009.110. This classic paper summarizes the latest developments in addiction neurobiology, including aspects relating to alcohol and drug craving.

    Article  PubMed  Google Scholar 

  54. Kauer JA, Malenka RC. Synaptic plasticity and addiction. Nat Rev Neurosci. 2007;8(11):844–58. https://doi.org/10.1038/nrn2234.

    Article  PubMed  CAS  Google Scholar 

  55. Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci. 2005;8(11):1445–9. https://doi.org/10.1038/nn1578.

    Article  PubMed  CAS  Google Scholar 

  56. Berridge KC, Kringelbach ML. Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology. 2008;199(3):457–80. https://doi.org/10.1007/s00213-008-1099-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Le Merrer J, Becker JA, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev. 2009;89(4):1379–412. https://doi.org/10.1152/physrev.00005.2009.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Salamone JD, Correa M. The mysterious motivational functions of mesolimbic dopamine. Neuron. 2012;76(3):470–85. https://doi.org/10.1016/j.neuron.2012.10.021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Bechara A. Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci. 2005;8(11):1458–63. https://doi.org/10.1038/nn1584.

    Article  PubMed  CAS  Google Scholar 

  60. Buhler M, Vollstadt-Klein S, Kobiella A, Budde H, Reed LJ, Braus DF, et al. Nicotine dependence is characterized by disordered reward processing in a network driving motivation. Biol Psychiatry. 2010;67(8):745–52. https://doi.org/10.1016/j.biopsych.2009.10.029.

    Article  PubMed  CAS  Google Scholar 

  61. Garavan H. Insula and drug cravings. Brain Struct Funct. 2010;214(5–6):593–601. https://doi.org/10.1007/s00429-010-0259-8.

    Article  PubMed  Google Scholar 

  62. Moran-Santa Maria MM, Hartwell KJ, Hanlon CA, Canterberry M, Lematty T, Owens M, et al. Right anterior insula connectivity is important for cue-induced craving in nicotine-dependent smokers. Addict Biol. 2015;20(2):407–14. https://doi.org/10.1111/adb.12124.

    Article  PubMed  CAS  Google Scholar 

  63. Lubman DI, Yucel M, Pantelis C. Addiction, a condition of compulsive behaviour? Neuroimaging and neuropsychological evidence of inhibitory dysregulation. Addiction. 2004;99(12):1491–502. https://doi.org/10.1111/j.1360-0443.2004.00808.x.

    Article  PubMed  Google Scholar 

  64. Chase HW, Eickhoff SB, Laird AR, Hogarth L. The neural basis of drug stimulus processing and craving: an activation likelihood estimation meta-analysis. Biol Psychiatry. 2011;70(8):785–93. https://doi.org/10.1016/j.biopsych.2011.05.025.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Engelmann JM, Versace F, Robinson JD, Minnix JA, Lam CY, Cui Y, et al. Neural substrates of smoking cue reactivity: a meta-analysis of fMRI studies. NeuroImage. 2012;60(1):252–62. https://doi.org/10.1016/j.neuroimage.2011.12.024.

    Article  PubMed  Google Scholar 

  66. Hanlon CA, Dowdle LT, Naselaris T, Canterberry M, Cortese BM. Visual cortex activation to drug cues: a meta-analysis of functional neuroimaging papers in addiction and substance abuse literature. Drug Alcohol Depend. 2014;143:206–12. https://doi.org/10.1016/j.drugalcdep.2014.07.028.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kuhn S, Gallinat J. Common biology of craving across legal and illegal drugs—a quantitative meta- analysis of cue-reactivity brain response. Eur J Neurosci. 2011;33(7):1318–26. https://doi.org/10.1111/j.1460-9568.2010.07590.x.

    Article  PubMed  Google Scholar 

  68. •• Schacht JP, Anton RF, Myrick H. Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review. Addict Biol. 2013;18(1):121–33. https://doi.org/10.1111/j.1369-1600.2012.00464.x. This meta-analysis examines the neural basis of alcohol cue reactivity by consolidating the literature on fMRI studies that provoke craving through the presentation of alcohol cues.

    Article  PubMed  Google Scholar 

  69. Wise RA. Neurobiology of addiction. Curr Opin Neurobiol. 1996;6(2):243–51.

    Article  PubMed  CAS  Google Scholar 

  70. Lak A, Stauffer WR, Schultz W. Dopamine prediction error responses integrate subjective value from different reward dimensions. Proc Natl Acad Sci U S A. 2014;111(6):2343–8. https://doi.org/10.1073/pnas.1321596111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Courtney KE, Ghahremani DG, London ED, Ray LA. The association between cue-reactivity in the precuneus and level of dependence on nicotine and alcohol. Drug Alcohol Depend. 2014;141:21–6. https://doi.org/10.1016/j.drugalcdep.2014.04.026.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Volkow ND, Chang L, Wang GJ, Fowler JS, Franceschi D, Sedler M, et al. Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. J Neurosci. 2001;21(23):9414–8.

    Article  PubMed  CAS  Google Scholar 

  73. Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Childress AR, et al. Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci. 2006;26(24):6583–8. https://doi.org/10.1523/JNEUROSCI.1544-06.2006.

    Article  PubMed  CAS  Google Scholar 

  74. Li X, Venniro M, Shaham Y. Translational research on incubation of cocaine craving. JAMA Psychiatry. 2016;73(11):1115–6. https://doi.org/10.1001/jamapsychiatry.2016.2110.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang G, Shi J, Chen N, Xu L, Li J, Li P, et al. Effects of length of abstinence on decision-making and craving in methamphetamine abusers. PLoS One. 2013;8(7):e68791. https://doi.org/10.1371/journal.pone.0068791.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zorick T, Nestor L, Miotto K, Sugar C, Hellemann G, Scanlon G, et al. Withdrawal symptoms in abstinent methamphetamine-dependent subjects. Addiction. 2010;105(10):1809–18. https://doi.org/10.1111/j.1360-0443.2010.03066.x.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Courtney KE, Ray LA. Subjective responses to alcohol in the lab predict neural responses to alcohol cues. J Stud Alcohol Drugs. 2014;75(1):124–35.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Due DL, Huettel SA, Hall WG, Rubin DC. Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: evidence from functional magnetic resonance imaging. Am J Psychiatry. 2002;159(6):954–60. https://doi.org/10.1176/appi.ajp.159.6.954.

    Article  PubMed  Google Scholar 

  79. Filbey FM, Claus E, Audette AR, Niculescu M, Banich MT, Tanabe J, et al. Exposure to the taste of alcohol elicits activation of the mesocorticolimbic neurocircuitry. Neuropsychopharmacology. 2008;33(6):1391–401. https://doi.org/10.1038/sj.npp.1301513.

    Article  PubMed  CAS  Google Scholar 

  80. Heinz A, Siessmeier T, Wrase J, Hermann D, Klein S, Grusser SM, et al. Correlation between dopamine D(2) receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry. 2004;161(10):1783–9. https://doi.org/10.1176/appi.ajp.161.10.1783.

    Article  PubMed  Google Scholar 

  81. Drummond DC, Litten RZ, Lowman C, Hunt WA. Craving research: future directions. Addiction. 2000;95(Suppl 2):S247–55.

    Article  PubMed  Google Scholar 

  82. Perkins KA. Does smoking cue-induced craving tell us anything important about nicotine dependence? Addiction. 2009;104(10):1610–6. https://doi.org/10.1111/j.1360-0443.2009.02550.x.

    Article  PubMed  Google Scholar 

  83. Wilson SJ, Sayette MA. Neuroimaging craving: urge intensity matters. Addiction. 2015;110(2):195–203. https://doi.org/10.1111/add.12676.

    Article  PubMed  Google Scholar 

  84. Brumback T, Squeglia LM, Jacobus J, Pulido C, Tapert SF, Brown SA. Adolescent heavy drinkers’ amplified brain responses to alcohol cues decrease over one month of abstinence. Addict Behav. 2015;46:45–52. https://doi.org/10.1016/j.addbeh.2015.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Volkow ND, Koob GF, Croyle RT, Bianchi DW, Gordon JA, Koroshetz WJ, et al. The conception of the ABCD study: from substance use to a broad NIH collaboration. Dev Cognitive Neurosci. 2017; https://doi.org/10.1016/j.dcn.2017.10.002.

  86. Bujarski S, Ray LA. Experimental psychopathology paradigms for alcohol use disorders: applications for translational research. Behav Res Ther. 2016;86:11–22. https://doi.org/10.1016/j.brat.2016.05.008.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Plebani JG, Ray LA, Morean ME, Corbin WR, MacKillop J, Amlung M, et al. Human laboratory paradigms in alcohol research. Alcohol Clin Exp Res. 2012;36(6):972–83. https://doi.org/10.1111/j.1530-0277.2011.01704.x.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Perkins KA. Subjective reactivity to smoking cues as a predictor of quitting success. Nicotine Tob Res. 2012;14(4):383–7. https://doi.org/10.1093/ntr/ntr229.

    Article  PubMed  Google Scholar 

  89. Litten RZ, Ryan ML, Falk DE, Reilly M, Fertig JB, Koob GF. Heterogeneity of alcohol use disorder: understanding mechanisms to advance personalized treatment. Alcohol Clin Exp Res. 2015;39(4):579–84. https://doi.org/10.1111/acer.12669.

    Article  PubMed  Google Scholar 

  90. Miranda R Jr, Treloar H. Emerging pharmacologic treatments for adolescent substance use: challenges and new directions. Curr Addict Rep. 2016;3(2):145–56. https://doi.org/10.1007/s40429-016-0098-7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lara A. Ray.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Adolescent/Young Adult Addiction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, L.A., Roche, D.J.O. Neurobiology of Craving: Current Findings and New Directions. Curr Addict Rep 5, 102–109 (2018). https://doi.org/10.1007/s40429-018-0202-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40429-018-0202-2

Keywords

Navigation