Current Addiction Reports

, Volume 3, Issue 4, pp 445–449 | Cite as

Neurobiology of Disordered Gambling

Gambling (J Derevensky, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Gambling

Abstract

Background

Gambling disorder affects 0.4 to 1.9 % of adults worldwide and is commonly associated with significant psychosocial dysfunction.

Methods

This article provides a concise primer on recent research examining the neurobiological underpinnings of gambling disorder.

Results

Although impulsivity has been seen as one cognitive component underlying gambling disorder, compulsivity may be equally important to examine. Although causality remains elusive, structural and functional neuroimaging data suggest dysfunction in top-down executive control in gambling disorder. Recent twin research suggests that gambling disorder may have genetic links to both gambling and to obsessive-compulsive disorder.

Conclusions

Understanding the neurobiology of gambling disorder may lead to improved treatment approaches.

Keywords

Gambling Cognition Neuroimaging Genetics 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
  2. 2.
    Grant JE, Kim SW. Demographic and clinical features of 131 adult pathological gamblers. J Clin Psychiatry. 2001;62:957–62.CrossRefPubMedGoogle Scholar
  3. 3.
    Hodgins DC, Stea JN, Grant JE. Gambling disorders. Lancet. 2011;378:1874–84.CrossRefPubMedGoogle Scholar
  4. 4.
    Petry NM, Stinson FS, Grant BF. Comorbidity of DSM-IV pathological gambling and other psychiatric disorders: results from the National Epidemiologic Survey on alcohol and related conditions. J Clin Psychiatry. 2005;66:564–74.CrossRefPubMedGoogle Scholar
  5. 5.
    Shaffer HJ, Hall MN, Vander Bilt J. Estimating the prevalence of disordered gambling behavior in the United States and Canada: a research synthesis. Am J Public Health. 1999;89:1369–76.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ashley LL, Boehlke KK. Pathological gambling: a general overview. J Psychoactive Drugs. 2012;44:27–37.CrossRefPubMedGoogle Scholar
  7. 7.
    Conversano C, Marazziti D, Carmassi C, Baldini S, Barnabei G, Dell'Osso L. Pathological gambling: a systematic review of biochemical, neuroimaging, and neuropsychological findings. Harv Rev Psychiatry. 2012;20:130–48.CrossRefPubMedGoogle Scholar
  8. 8.
    Shaffer HJ, Martin R. Disordered gambling: etiology, trajectory, and clinical considerations. Ann Rev Clin Psychol. 2011;7:483–510.CrossRefGoogle Scholar
  9. 9.
    el-Guebaly N, Mudry T, Zohar J, Tavares H, Potenza MN. Compulsive features in behavioural addictions: the case of pathological gambling. Addiction. 2012;107:1726–34.CrossRefPubMedGoogle Scholar
  10. 10.
    van Holst RJ, van den Brink W, Veltman DJ, Goudriaan AE. Brain imaging studies in pathological gambling. Current Psychiatr Rep. 2010;12:418–25.CrossRefGoogle Scholar
  11. 11.
    van Holst RJ, van den Brink W, Veltman DJ, Goudriaan AE. Why gamblers fail to win: a review of cognitive and neuroimaging findings in pathological gambling. Neurosci Biobehav Rev. 2010;34:87–107.CrossRefPubMedGoogle Scholar
  12. 12.
    Limbrick-Oldfield EH, van Holst RJ, Clark L. Fronto-striatal dysregulation in drug addiction and pathological gambling: consistent inconsistencies? NeuroImage: Clinical. 2013;2:385–93.CrossRefGoogle Scholar
  13. 13.
    Chambers RA, Taylor JR, Potenza MN. Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. Am J Psychiatry. 2003;160:1041–52.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Goudriaan AE, Oosterlaan J, De Beurs E, Van Den Brink W. Neurocognitive functions in pathological gambling: a comparison with alcohol dependence, Tourette syndrome and normal controls. Addiction. 2006;101:534–47.CrossRefPubMedGoogle Scholar
  15. 15.
    Roca M, Torralva T, López P, Cetkovich M, Clark L, Manes F. Executive functions in pathologic gamblers selected in an ecologic setting. Cogn Behav Neurol. 2008;21:1–4.CrossRefPubMedGoogle Scholar
  16. 16.
    Petry NM. Pathological gamblers, with and without substance use disorders, discount delayed rewards at high rates. J Abnorm Psychol. 2001;110:482–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Grant JE, Potenza MN. Compulsive aspects of impulse-control disorders. Psychiatr Clin North Am. 2006;29:539–51.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Blaszczynski A. Pathological gambling and obsessive compulsive spectrum disorders. Psychol Rep. 1999;84:107–13.CrossRefPubMedGoogle Scholar
  19. 19.
    Frost RO, Meagher BM, Riskind JH. Obsessive compulsive features in pathological lottery and stratch-ticket gamblers. J Gambl Stud. 2001;17:5–19.CrossRefPubMedGoogle Scholar
  20. 20.
    Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W. Decision making in pathological gambling: a comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Brain Res Cogn Brain Res. 2005;23:137–51.CrossRefPubMedGoogle Scholar
  21. 21.
    Odlaug BL, Chamberlain SR, Kim SW, Schreiber LR, Grant JEA. Neurocognitive comparison of cognitive flexibility and response inhibition in gamblers with varying degrees of clinical severity. Psychol Med. 2011;41:2111–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    •Leppink EW, Redden SA, Grant JE. Impulsivity and gambling: a complex clinical association across three measures. Am J Addict. 2016;25:138–44. First article to examine how we measure impulsivity determines clinical findings.Google Scholar
  23. 23.
    Grant JE, Chamberlain SR, Schreiber LR, Odlaug BL, Kim SW. Selective decision-making deficits in at-risk gamblers. Psychiatry Res. 2011;189:115–20.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rahman AS, Xu J, Potenza MN. Hippocampal and amygdalar volumetric differences in pathological gambling: a preliminary study of the associations with the behavioral inhibition system. Neuropsychopharmacology. 2014;39:738–45.CrossRefPubMedGoogle Scholar
  25. 25.
    Joutsa J, Saunavaara J, Parkkola R, Niemelä S, Kaasinen V. Extensive abnormality of brain white matter integrity in pathological gambling. Psychiatry Res. 2011;194:340–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Van Holst RJ, Van Holstein M, Van Den Brink W, Veltman DJ, Goudriaan AE. Response inhibition during cue reactivity in problem gamblers: an fMRI study. PLoS One. 2012;7:e30909.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Koehler S, Hasselmann E, Wüstenberg T, Heinz A, Romanczuk-Seiferth N. Higher volume of ventral striatum and right prefrontal cortex in pathological gambling. Brain Struct Funct. 2013.Google Scholar
  28. 28.
    Yip SW, Lacadie C, Xu J, Worhunsky PD, Fulbright RK, Constable RT, Potenza MN. Reduced genual corpus callosal white matter integrity in pathological gambling and its relationship to alcohol abuse or dependence. World J Biol Psychiatry. 2013;14:129–38. doi:10.3109/15622975.2011.568068.
  29. 29.
    Chamberlain SR, Derbyshire K, Daws RE, Odlaug BL, Leppink EW, Grant JE. White matter tract integrity in treatment-resistant gambling disorder. Br J Psychiatry. 2016;208:579–584. doi:10.1192/bjp.bp.115.165506.
  30. 30.
    Grant JE, Odlaug BL, Chamberlain SR. Reduced cortical thickness in gambling disorder: a morphometric MRI study. Eur Arch Psychiatry Clin Neurosci. 2015;265:655–61.CrossRefPubMedGoogle Scholar
  31. 31.
    Goudriaan AE, Yücel M, van Holst RJ. Getting a grip on problem gambling: what can neuroscience tell us? Front Behav Neurosci. 2014;8:141.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Potenza MN. The neural bases of cognitive processes in gambling disorder. Trends Cogn Sci. 2014;18:429–38.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    de Ruiter MB, Veltman DJ, Goudriaan AE, Oosterlaan J, Sjoerds Z, van den Brink W. Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology. 2009;34:1027–38.CrossRefPubMedGoogle Scholar
  34. 34.
    Goudriaan AE, de Ruiter MB, van den Brink W, Oosterlaan J, Veltman DJ. Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: an fMRI study. Addict Biol. 2010;15:491–503.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Miedl SF, Peters J, Büchel C. Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Arch Gen Psychiatry. 2012;69:177–86.CrossRefPubMedGoogle Scholar
  36. 36.
    Balodis IM, Kober H, Worhunsky PD, Stevens MC, Pearlson GD, Potenza MN. Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry. 2012;71:749–57.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    de Greck M, Enzi B, Prösch U, Gantman A, Tempelmann C, Northoff G. Decreased neuronal activity in reward circuitry of pathological gamblers during processing of personal relevant stimuli. Hum Brain Mapp. 2010;31:1802–12.PubMedGoogle Scholar
  38. 38.
    Tschernegg M et al. Abnormalities of functional brain networks in pathological gambling: a graph-theoretical approach. Front Hum Neurosci. 2013. doi:10.3389/fnhum.2013.00625.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Chase HW, Clark L. Gambling severity predicts midbrain response to near-miss outcomes. J Neurosci. 2010;30:6180–7.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Clark L, Crooks B, Clarke R, Aitken MRF, Dunn. BD. Physiological responses to near-miss outcomes and personal control during simulated gambling. J Gambl Stud. 2012;28:123–37.CrossRefPubMedGoogle Scholar
  41. 41.
    Worhunsky PD, Malison RT, Rogers RD, Potenza MN. Altered neural correlates of reward and loss processing during simulated slot-machine fMRI in pathological gambling and cocaine dependence. Drug Alcohol Depend. 2014;145:77–86.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lobo DS, Kennedy JL. Genetic aspects of pathological gambling: a complex disorder with shared genetic vulnerabilities. Addiction. 2009;104:1454–65.CrossRefPubMedGoogle Scholar
  43. 43.
    •Slutske WS, Ellingson JM, Richmond-Rakerd LS, Zhu G, Martin NG. Shared genetic vulnerability for disordered gambling and alcohol use disorder in men and women: evidence from a national community-based Australian Twin Study. Twin Res Hum Genet. 2013;16:525–34. Important study comparing gambling disorder to cocaine addiction.Google Scholar
  44. 44.
    Scherrer JF, Xian H, Slutske WS, Eisen SA, Potenza MN. Associations between obsessive-compulsive classes and pathological gambling in a national cohort of male twins. JAMA Psychiatry. 2015;72:342–9.CrossRefPubMedGoogle Scholar
  45. 45.••
    Goudriaan AE, Oosterlaan J, de Beurs E, Van den Brink W. Pathological gambling: a comprehensive review of biobehavioral findings. Neurosci Biobehav Rev. 2004;28:123–41. Study examining the genetics of gambling and alcohol use disorder.Google Scholar
  46. 46.
    Nussbaum D et al. An eight component decision-making model for problem gambling: a systems approach to stimulate integrative research. J Gambl Stud. 2011;27:523–63.CrossRefPubMedGoogle Scholar
  47. 47.
    Ye Z, Hammer A, Camara E, Münte TF. Pramipexole modulates the neural network of reward anticipation. Hum Brain Mapp. 2011;32:800–11.CrossRefPubMedGoogle Scholar
  48. 48.
    Abler B, Hahlbrock R, Unrath A, Grön G, Kassubek J. At-risk for pathological gambling: imaging neural reward processing under chronic dopamine agonists. Brain. 2009;132:2396–402.CrossRefPubMedGoogle Scholar
  49. 49.
    Grant JE, Leppink EW, Redden SA, Odlaug BL, Chamberlain SR. COMT genotype, gambling activity, and cognition. J Psychiatr Res. 2015;68:371–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Kalivas PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci. 2009;10:561–72.CrossRefPubMedGoogle Scholar
  51. 51.
    Kalivas PW, Volkow ND. New medications for drug addiction hiding in glutamatergic neuroplasticity. Mol Psychiatry. 2011;16:974–86.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Nordin C, Gupta RC, Sjödin I. Cerebrospinal fluid amino acids in pathological gamblers and healthy controls. Neuropsychobiology. 2007;56:152–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Koot S et al. Compromised decision-making and increased gambling proneness following dietary serotonin depletion in rats. Neuropharmacology. 2012;62:1640–50.CrossRefPubMedGoogle Scholar
  54. 54.
    Ishii H, Ohara S, Tobler PN, Tsutsui K-I, Iijima T. Dopaminergic and serotonergic modulation of anterior insular and orbitofrontal cortex function in risky decision making. Neurosci Res. 2015;92:53–61.CrossRefPubMedGoogle Scholar
  55. 55.
    Zeeb FD, Robbins TW, Winstanley CA. Serotonergic and dopaminergic modulation of gambling behavior as assessed using a novel rat gambling task. Neuropsychopharmacology. 2009;34:2329–43.CrossRefPubMedGoogle Scholar
  56. 56.
    Ibáñez A, Blanco C, Perez de Castro I, Fernandez-Piqueras J, Sáiz-Ruiz J. Genetics of pathological gambling. J Gambl Stud. 2003;19:11–22.CrossRefPubMedGoogle Scholar
  57. 57.
    Wilson D, da Silva Lobo DS, Tavares H, Gentil V, Vallada H. Family-based association analysis of serotonin genes in pathological gambling disorder: evidence of vulnerability risk in the 5HT-2 A receptor gene. J Mol Neurosci. 2013;49:550–3.CrossRefPubMedGoogle Scholar
  58. 58.
    Aston-Jones G, Cohen JD. Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. J Comp Neurol. 2005;493:99–110.CrossRefPubMedGoogle Scholar
  59. 59.
    Bouret S, Sara SJ. Network reset: a simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci. 2005;28:574–82.CrossRefPubMedGoogle Scholar
  60. 60.
    Baarendse PJJ, Winstanley CA, Vanderschuren LJMJ. Simultaneous blockade of dopamine and noradrenaline reuptake promotes disadvantageous decision making in a rat gambling task. Psychopharmacology. 2013;225:719–31.CrossRefPubMedGoogle Scholar
  61. 61.
    Roy A et al. CSF GABA and neuropeptides in pathological gamblers and normal controls. Psychiatry Res. 1989;30:137–44.CrossRefPubMedGoogle Scholar
  62. 62.
    Pallanti S et al. Noradrenergic function in pathological gambling: blunted growth hormone response to clonidine. J Psychopharmacol. 2010;24:847–53.CrossRefPubMedGoogle Scholar
  63. 63.
    Peciña S, Smith KS, Berridge KC. Hedonic hot spots in the brain. Neuroscientist. 2006;12:500–11.CrossRefPubMedGoogle Scholar
  64. 64.
    Barbano MF, Cador M. Opioids for hedonic experience and dopamine to get ready for it. Psychopharmacology. 2007;19:497–506.CrossRefGoogle Scholar
  65. 65.
    Shinohara K et al. Physiological changes in pachinko players; beta-endorphin, catecholamines, immune system substances and heart rate. Appl Hum Sci. 1999;18:37–42.CrossRefGoogle Scholar
  66. 66.
    Mick I et al. Blunted endogenous opioid release following an oral amphetamine challenge in pathological gamblers. Neuropsychopharmacology. 2016;41:1742–50.CrossRefPubMedGoogle Scholar
  67. 67.
    Grant JE, Kim SW, Hartman BK. A double-blind, placebo-controlled study of the opiate antagonist naltrexone in the treatment of pathological gambling urges. J Clin Psychiatry. 2008;69:783–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Grant JE, Odlaug BL, Potenza MN, Hollander E, Kim SW. Nalmefene in the treatment of pathological gambling: multicentre, double-blind, placebo-controlled study. Br J Psychiatry. 2010;197:330–1.CrossRefPubMedGoogle Scholar
  69. 69.
    Grant JE et al. Multicenter investigation of the opioid antagonist nalmefene in the treatment of pathological gambling. Am J Psychiatry. 2006;163:303–12.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Psychiatry & Behavioral Neuroscience, Pritzker School of MedicineUniversity of ChicagoChicagoUSA

Personalised recommendations