Skip to main content

Advertisement

Log in

Predicting the impact of climate change on habitat suitability and morphological traits of Begonia aborensis Dunn in Northeastern India: an endemic taxon of Indo-Myanmar hotspot

  • Ecology & Biogeography - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

As climate change induces habitat shifts, bioclimatic variables are used in suitable habitat modeling to predict species migration. Begonia aborensis Dunn of sect. Sphenanthera (Hassk.) Warb. (Begoniaceae), a native species to Abor hills was categorized as ‘Rare’ in India. The study aimed to generate ecological niche modeling of B. aborensis, identify the influential bioclimatic factors, and trait analysis to detect the informative morphological traits of the species by ancestral reconstruction. Maxent version 3.3.3 was employed for ENM at 30 arc-second which showed an AUC value  < 1, and highly suitable habitats in parts of Arunachal Pradesh, Meghalaya, and Nagaland. The annual precipitation, precipitation of the driest month, elevation, and annual mean temperature were found as the most influential bioclimatic predictors. The Representative Concentration Pathway (RCP) scenarios of greenhouse gas emission for 2050 and 2070 showed suitability potential as 3.62% (119,327.65 km2) and 4.29% (141,023.58 km2) by RCP 2.6, 4.41% (144,968.3 km2) and 3.98% (130,833 km2) by RCP 4.5 and 4.1% (134,777.7 km2) and 3.53% (116,040.38 km2) by RCP 8.5 respectively, compared to decline from current range 3.70% (121,765.26 km2) in the long term. The ancestral reconstruction by Mesquite v.3.70 showed bioclimatic variables linked to character states such as denticulate leaf margin, and fleshy fruits without horns or wings as ecologically informative character states in B. aborensis and as an indicator of the distribution of the species in heavy rainfall regions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the data used in the study are available in the manuscript and the supplementary materials.

Abbreviations

CCAFS:

Climate change, agriculture and food security

CEM:

Climate envelope models

CGIARP:

Consultative Group on International Agricultural Research Program

GAM:

General additive modeling

GHG:

Green house gas

IPCC:

Intergovernmental Panel on Climate Change

ISRO:

Indian Space Research Organisation

MM:

Mechanistic model

NER:

North-eastern region

NERIST:

The herbarium of North Eastern Regional Institute of Science and Technology, Arunachal Pradesh

RCP:

Representative concentration pathway

RGU:

The herbarium of Rajiv Gandhi University, Arunachal Pradesh

SAC:

Space Applications Centre

SD:

Standard deviation

SFRI:

The herbarium of State Forest Research Institute, Arunachal Pradesh

References

  • Adhikari D, Barik SK, Upadhaya K (2012) Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecol Eng 40:37–43. https://doi.org/10.1016/j.ecoleng.2011.12.004

    Article  Google Scholar 

  • Adhikari D, Mir AH, Upadhaya K, Iralu V, Roy DK (2018) Abundance and habitat-suitability relationship deteriorate in fragmented forest landscapes: a case of Adinandra griffithii Dyer, a threatened endemic tree from Meghalaya in northeast India. Ecol Process 7:1–9. https://doi.org/10.1186/s13717-018-0114-z

    Article  Google Scholar 

  • Ahmedullah M, Nayar MP (1987) Endemic Plants of the Indian Region. Vol. 1. Peninsular India. Botanical Survey of India, Calcutta.

  • Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberon J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model 222(11):1810–1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011

    Article  Google Scholar 

  • Bertin RI, Kerwin MA (1998) Floral sex ratios and gynomonoecy in Aster (Asteraceae). Am J Bot 85:235–244. https://doi.org/10.2307/2446311

    Article  CAS  PubMed  Google Scholar 

  • Borah D, Taram M, Wahlsteen E (2021) Begonia dicressine (Begoniaceae): a new record for India. Nat Conserv Res 6:110–111. https://doi.org/10.24189/ncr.2021.044

  • Bora PK, Kemprai P, Barman R, Das D, Nazir A, Saikia SP, Banik D, Haldar S (2021) A sensitive 1H NMR spectroscopic method for the quantification of capsaicin and capsaicinoid: morpho-chemical characterisation of chili land races from northeast India. Phytochem Anal 32(1):91–103. https://doi.org/10.1002/pca.2934

    Article  CAS  PubMed  Google Scholar 

  • Brown CD, Vellend M (2014) Non-climatic constraints on upper elevational plant range expansion under climate change. Proc R Soc b Biol Sci 281(1794):20141779. https://doi.org/10.1098/rspb.2014.1779

    Article  Google Scholar 

  • Brown JL (2014) SDM toolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Method Ecol Evol 5(7):694–700. https://doi.org/10.1111/2041-210X.12200

    Article  Google Scholar 

  • Burkill IH (1924) Botany of the Abor Expedition. Records of the Botanical Survey of India 10:1–420

    Google Scholar 

  • Camfield R, Hughes M (2018) A revision and one new species of Begonia L. (Begoniaceae, Cucurbitales) in Northeast India. Eur J Taxon (396). https://doi.org/10.5852/ejt.2018.396

  • Choudhury BA, Saha SK, Konwar M, Sujith K, Deshamukhya A (2019) Rapid drying of Northeast India in the last three decades: climate change or natural variability. J Geophys Res Atmos 124:227–237. https://doi.org/10.1029/2018JD029625

    Article  Google Scholar 

  • Correa-Lima APA, Varassin IG, Barve N, Zwiener VP (2019) Spatio-temporal effects of climate change on the geographical distribution and flowering phenology of hummingbird-pollinated plants. Ann Bot 124(3):389–398. https://doi.org/10.1093/aob/mcz079

    Article  PubMed  PubMed Central  Google Scholar 

  • Das A, Ghosh PK, Choudhury BU, Patel DP, Munda GC, Ngachan SV, Chowdhury P (2009, December) Climate change in North East India: recent facts and events–worry for agricultural management. In Proceedings of the workshop on impact of climate change on agriculture, pp 32–37

  • Das B, Saikia J, Konwar P, Siga A, Banik D (2022) A new dioecious species of Begonia (Begoniaceae) from Arunachal Pradesh, India. Phytotaxa 575(1), 89–96. https://doi.org/10.11646/phytotaxa.575.1.6

  • Doorenbos J, Sosef MSM, De Wilde JJFE (1998) The sections of Begonia including descriptions, keys and species lists (Studies in Begoniaceae VI) (No. 98–2). Wageningen Agricultural University.

  • Dunn ST (1920) Decades Kewensis: Plantarum Novarum in Herbario Horti Regii Conservatarum. Decas XCVI. Bulletin of Miscellaneous Information, Kew 1920: 108–111. Available from http:// biodiversitylibrary.org/page/11269649

  • Escobar LE, Medina-Vogel G, Peterson AT (2014) Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and Niche-A to assure strict model transference. Geospat Health 9(1):221–229. https://doi.org/10.4081/gh.2014.19

    Article  PubMed  Google Scholar 

  • Feeley KJ, Silman MR (2011) Keep collecting: accurate species distribution modelling requires more collections than previously thought. Divers Distrib 17(6):1132–1140. https://doi.org/10.1111/j.1472-4642.2011.00813.x

    Article  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Gao X, Liu J, Huang Z (2022) The impact of climate change on the distribution of rare and endangered tree Firmiana kwangsiensis using the Maxent modeling. Ecol Evol 12(8), e9165. https://doi.org/10.1002/ece3.9165

  • Gray LK, Clarke C, Wint GW, Moran, JA (2017) Potential effects of climate change on members of the Palaeotropical pitcher plant family Nepenthaceae. PloS one 12(8), e0183132. https://doi.org/10.1371/journal.pone.0183132

  • Gutiérrez-Rodríguez BE, Guevara R, Angulo DF, Ruiz-Domínguez C, Sosa V (2022) Ecological niches, endemism and conservation of the species in Selenicereus (Hylocereeae, Cactaceae). Rev Bras Bot 45(3):1149–1160. https://doi.org/10.1007/s40415-022-00818-z. https://mausam.imd.gov.in/imd_latest/contents/ar2020.pdf (IMD annual report,2020, Accessed on 8 april,2022) https://www.tropmet.res.in/Data%20Archival-51-Page (Accessed on 8 april,2022)

  • Hernandez PA, Graham CH, Master LL, Albert D (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29(5):773–785. https://doi.org/10.1111/j.0906-7590.2006.04700.x

    Article  Google Scholar 

  • Hughes M, Girmansyah D (2011) A revision of Begonia sect. Sphenanthera (Hassk.) Warb. from Sumatra. Gard Bull (singapore) 62:27–39

    Google Scholar 

  • Hynniewta SR, Kumar Y (2008) Herbal remedies among the Khasi traditional healers and village folks in Meghalaya. Indian J Trad Knowl 7:581–586

    Google Scholar 

  • Kardol P, Campany CE, Souza L, Norby RJ, Weltzin JF, Classen AT (2010) Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem. Glob Change Biol 16:2676–2687. https://doi.org/10.1111/j.1365-2486.2010.02162.x

    Article  Google Scholar 

  • Khanduri VP, Sharma CM, Singh SP (2008) The effects of climate change on plant phenology. Environmentalist 28:143–147. https://doi.org/10.1007/s10669-007-9153-1

    Article  Google Scholar 

  • Liu H, Mi Z, Lin LI, Wang Y, Zhang Z, Zhang F, He JS (2018) Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc Natl Acad Sci USA 115:4051–4056. https://doi.org/10.1073/pnas.1700299114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x

    Article  Google Scholar 

  • Lungphi P, Wangpan T, Tangjang S (2018) Wild edible plants and their additional uses by the Tangsa community living in the Changlang district of Arunachal Pradesh, India. Pleione 12:151–164. https://doi.org/10.26679/Pleione.12.2.2018.151-164

  • Maddison WP, Maddison DR (2018) Mesquite: a modular system for evolutionary analysis. Version 3:4

    Google Scholar 

  • Machado-Stredel F, Cobos ME, Peterson AT (2021) A simulation-based method for selecting calibration areas for ecological niche models and species distribution models. Frontiers of Biogeography, 13(4). https://doi.org/10.21425/F5FBG48814

  • Manes S, Costello MJ, Beckett H, Debnath A, Devenish-Nelson E, Grey KA,Vale MM (2021) Endemism increases species' climate change risk in areas of global biodiversity importance. Biol Conserv 257:109070. https://doi.org/10.1016/j.biocon.2021.109070

  • McDonald PG, Fonseca CR, McC J, Westoby M (2003) Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades. Funct Ecol pp 50–57

  • Moonlight PW, Ardi WH, Padilla LA, Chung KF, Fuller D, Girmansyah D, Hughes M (2018) Dividing and conquering the fastest–growing genus: Towards a natural sectional classification of the mega–diverse genus Begonia (Begoniaceae). Taxon 67:267–323. https://doi.org/10.12705/672.3

  • Moss RH (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. IPCC Expert Meeting Report. http://www.ipcc.ch/pdf/supporting-material/expert-meeting-ts-scenarios.pdf.IPCC

  • Nadeem M, Khan MA, Riaz A, Ahmad R (2011) Evaluation of growth and flowering potential of rosa hybrida cultivars under Faisalabad climatic conditions. Pak J Agri Sci 48:283–288

    Google Scholar 

  • Navarro-Racines C, Tarapues J, Thornton P, Jarvis A, Ramirez-Villegas J (2020) High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci Data 7(1):1–14. https://doi.org/10.1038/s41597-019-0343-8

    Article  Google Scholar 

  • Navas-Lopez JF, León L, Rapoport HF, Moreno-Alías I, Lorite IJ, de la Rosa R (2019) Genotype, environment and their interaction effects on olive tree flowering phenology and flower quality. Euphytica 215(11):1–13. https://doi.org/10.1007/s10681-019-2503-5

    Article  CAS  Google Scholar 

  • Nayar MP (1996) Hot spots of endemic plants of India, Nepal and Bhutan. Tropical Botanic Garden and Research Institute, Thiruvananthapuram.

  • Nayar PH, Sastry ARK (1990) Red data sheet. Red data book of Indian plants, Vol 3.

  • Olivares-Pinto U, Barbosa NP, Fernandes GW (2022) Global invasibility potential of the shrub Baccharis drancunculifolia. Rev Bras Bot 45(3):1081–1097. https://doi.org/10.1007/s40415-022-00817-0

    Article  Google Scholar 

  • Osorio-Olvera L, Lira-Noriega A, Soberón J, Peterson AT, Falconi M, Contreras-Díaz RG, Barve N (2020) ntbox: An r package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods Ecol Evol 11:1199–1206. https://doi.org/10.1111/2041-210X.13452

    Article  Google Scholar 

  • Pacifici M, Foden WB, Visconti P, Watson JE, Butchart SH, Kovacs KM, Rondinini C (2015) Assessing species vulnerability to climate change. Nat Clim Change 5:215–224. https://doi.org/10.1038/nclimate2448

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob Ecol Biogeogr 12(5):361–371. https://doi.org/10.1046/j.1466-822X.2003.00042.x

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x

    Article  Google Scholar 

  • Phillips SJ, Elith J (2010) POC plots: calibrating species distribution models with presence-only data. Ecology 91:2476–2484. https://doi.org/10.1890/09-0760.1

    Article  PubMed  Google Scholar 

  • Pramanik M, Paudel U, Mondal B, Chakraborti S, Deb P (2018) Predicting climate change impacts on the distribution of the threatened Garcinia indica in the Western Ghats, India. Clim Risk Manag 19:94–105. https://doi.org/10.1016/j.crm.2017.11.002

    Article  Google Scholar 

  • Pugnaire FI, Morillo JA, Peñuelas J, Reich PB, Bardgett RD, Gaxiola A, Van Der Putten WH (2019) Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci Adv 5:eaaz1834. https://doi.org/10.1126/sciadv.aaz1834

  • Rajpoot R, Adhikari D, Verma S, Saikia P, Kumar A, Grant KR, Khan ML (2020) Climate models predict a divergent future for the medicinal tree Boswellia serrata Roxb. in India. Glob Ecol Conserv 23:e01040. https://doi.org/10.1016/j.gecco.2020.e01040

  • Ravindranath NH, Joshi NV, Sukumar R, Saxena A (2006) Impact of climate change on forests in India. Current Sci, pp 354–361

  • Ravindranath NH, Rao S, Sharma N, Nair M, Gopalakrishnan R, Rao AS, Bala G (2011) Climate change vulnerability profiles for North East India. Current Sci, pp 384–394

  • Ravindranath NH, Sukumar R (1998) Climate change and tropical forests in India. In Potential Impacts of Climate change on tropical forest ecosystems Springer, Dordrecht, pp 423–441. https://doi.org/10.1007/978-94-017-2730-3_21

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57. https://doi.org/10.1007/s10584-011-0149-y

    Article  CAS  Google Scholar 

  • Rinyo R, Momang T, Pallabi KH, Tag H (2018) Ethnobotanical resources and traditional skills prevalent among the Tagin community of Arunachal Pradesh, India. Pleione 12:265–274. https://doi.org/10.26679/Pleione.12.2.2018.265-274

  • Royer DL, McElwain JC, Adams JM, Wilf P (2008) Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii. New Phytol 179(3):808–817. https://doi.org/10.1111/j.1469-8137.2008.02496.x

    Article  PubMed  Google Scholar 

  • Saikia P, Kumar A, Khan ML (2016) Biodiversity status and climate change scenario in Northeast India. In: Climate Change Challenge (3C) and Social-Economic-Ecological Interface-Building Springer, Cham, pp 107–120. https://doi.org/10.1007/978-3-319-31014-5_8

  • Sajem AL, Gosai K (2010) Ethnobotanical investigations among the Lushai tribes in North Cachar hills district of Assam, northeast India. Indian J Trad Knowl 9:108–113

    Google Scholar 

  • Shankhwar R, Bhandari MS, Meena RK, Shekhar C, Pandey VV, Saxena J, Ginwal HS (2019) Potential eco-distribution mapping of Myrica esculenta in northwestern Himalayas. Ecol Eng 128:98–111. https://doi.org/10.1016/j.ecoleng.2019.01.003

    Article  Google Scholar 

  • Siga A, Sarkar A, Konwar P, Saikia J, Saikia SP, Banik D (2022) Trait-linked phylogenetic framework of Paphiopedilum distributed in India revealed species passport trait to prevent unethical trade through in-silico study. S Afr J Bot 150:420–430. https://doi.org/10.1016/j.sajb.2022.07.021

    Article  Google Scholar 

  • Singh B, Sinha BK, Phukan SJ, Borthakur SK, Singh VN (2012) Wild edible plants used by Garo tribes of Nokrek Biosphere Reserve in Meghalaya, India. Indian J Trad Knowl 11:166–171

    Google Scholar 

  • Singh P, Kumar N (2022) Analysis of trend and temporal variability in rainfall over Northeast India. MAUSAM 73:307–314. https://doi.org/10.54302/mausam.v73i2.5479

  • Soberón J, Peterson AT (2005) Interpretation of Models of Fundamental Ecological Niches and Species’ Distributional Areas. Biodiv Inf Biodiversity Informatics 2.0, pp https://doi.org/10.17161/bi.v2i0.4

  • Sommer JH, Kreft H, Kier G, Jetz W, Mutke J, Barthlott W (2010) Projected impacts of climate change on regional capacities for global plant species richness. Proc R Soc B Biol Sci 277:2271–2280. https://doi.org/10.1098/rspb.2010.0120

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293. https://doi.org/10.1126/science.3287615

    Article  CAS  PubMed  Google Scholar 

  • Tag H, Kalita P, Dwivedi P, Das AK, Namsa ND (2012) Herbal medicines used in the treatment of diabetes mellitus in Arunachal Himalaya, northeast. Indian J Ethnopharmacol 141:786–795. https://doi.org/10.1016/j.jep.2012.03.007

    Article  Google Scholar 

  • Tamuli P, Sharma P (2010) Ethno-medico-botany of the Dimasa Kachari of North Cachar Hills district of Assam. Indian J Trad Knowl 9:718–720

    Google Scholar 

  • Tangjang S, Namsa ND, Aran C, Litin A (2011) An ethnobotanical survey of medicinal plants in the Eastern Himalayan zone of Arunachal Pradesh, India. J Ethnopharmacol 134:18–25. https://doi.org/10.1016/j.jep.2010.11.053

    Article  PubMed  Google Scholar 

  • Taram M, Borah D, Mipun P, Taram V, Das AP (2020) Evaluation of ethnobotanical knowledge in Komkar-Adi Biocultural Landscape of Eastern Himalayan Region of India. Asian J Ethnobiol 3(2). https://doi.org/10.13057/asianjethnobiol/y030204

  • Tebbitt MC (1997) A systematic investigation of Begonia section Sphenanthera (Hassk.) Benth. & Hook. f. Ph.D thesis, University of Glasgow

  • Tebbitt MC, Guan KY (2002) Emended circumscription of Begonia silletensis (Begoniaceae) and description of a new subspecies from Yunnan, China. Novon 12:133–136. https://doi.org/10.2307/3393252

    Article  Google Scholar 

  • Tebbitt MC, Lowe-Forrest L, Santoriello A, Clement WL, Swensen SM (2006) Phylogenetic relationships of Asian Begonia, with an emphasis on the evolution of rain-ballist and animal dispersal mechanisms in sections Platycentrum. Sphenanthera and Leprosae Systematic Botany 31(2):327–336. https://doi.org/10.1600/036364406777585784

    Article  Google Scholar 

  • Thomas DC (2010) Phylogenetics and historical biogeography of Southeast Asian Begonia L.(Begoniaceae). Doctoral dissertation, University of Glasgow

  • Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, Edmonds JA (2011) RCP4. 5: a pathway for stabilization of radiative forcing by 2100. Clim Change 109:77–94. https://doi.org/10.1007/s10584-011-0151-4

    Article  CAS  Google Scholar 

  • Tian D, Xiao Y, Tong Y, Fu N, Liu Q, Li C (2018) Diversity and conservation of Chinese wild begonias. Plant Divers 40:75–90. https://doi.org/10.1016/j.pld.2018.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Trisurat Y, Shrestha RP, Kjelgren R (2011) Plant species vulnerability to climate change in Peninsular Thailand. Appl Geogr 31:1106–1114. https://doi.org/10.1016/j.apgeog.2011.02.007

    Article  Google Scholar 

  • Uddin A (2007) Distribution and status of Indian Begonia L. species. J Econ Taxonomic Botany 31:591–597

    Google Scholar 

  • Uddin A (2010) Revision of the family Begoniaceae in India. PhD thesis, Gauhati University

  • Uddin A, Phukan S (2007) Notes on Begonia aborensis Dunn. A new record from Assam India. J Econ Taxonomic Botany 31:160–162

    Google Scholar 

  • Wang H, Wang R, Harrison SP, Prentice IC (2022) Leaf morphological traits as adaptations to multiple climate gradients. J Ecol 110(6):1344–1355. https://doi.org/10.1111/1365-2745.13873

    Article  PubMed  PubMed Central  Google Scholar 

  • Wani IA, Verma S, Kumari P, Charles B, Hashim MJ, El-Serehy HA (2021) Ecological assessment and environmental niche modelling of Himalayan rhubarb (Rheum webbianum Royle) in northwest Himalaya. PLoS One 16(11):e0259345. https://doi.org/10.1371/journal.pone.0259345

  • Xie C, Tian E, Jim CY, Liu D, Hu Z (2022) Effects of climate‐change scenarios on the distribution patterns of Castanea henryi. Ecology and Evolution, 12(12):e9597. https://doi.org/10.1002/ece3.9597

  • Xu J, Grumbine RE, Shrestha A, Eriksson M, Yang X, Wang YUN, Wilkes A (2009) The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol 23:520–530. https://doi.org/10.1111/j.1523-1739.2009.01237.x

    Article  CAS  PubMed  Google Scholar 

  • Yates KL, Bouchet PJ, Caley MJ, Mengersen K, Randin CF, Parnell S, ... & Sequeira AM (2018) Outstanding challenges in the transferability of ecological models. Trends in ecology & evolution, 33(10):790–802. https://doi.org/10.1016/j.tree.2018.08.001

  • Yanka H, Rinyo R, Das SK, Das TJ, Paul D, Gupta DD, Tag H (2012) A brief cross-cultural ethnobotanical note on the Abotani tribes of Arunachal Pradesh, India. Pleione 13:269–283. https://doi.org/10.26679/Pleione.13.2.2019.269-283

    Article  Google Scholar 

  • Zwiener VP, Padial AA, Marques MC, Faleiro FV, Loyola R, Peterson AT (2017) Planning for conservation and restoration under climate and land use change in the Brazilian Atlantic Forest. Divers Distrib 23(8):955–966. https://doi.org/10.1111/ddi.12588

    Article  Google Scholar 

Download references

Acknowledgements

The study was funded by the Council of Scientific and Industrial Research, Ministry of Science & Technology, Govt. of India, New Delhi under CSIR FBR project MLP0041. All the authors acknowledge the Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India for providing a platform to carry out the work, Director, Botanical Survey of India, In-charge of Itanagar Circle, BSI, Arunachal Pradesh, In-charge of Eastern Circle, BSI, Shillong, Meghalaya, In-charge of Sikkim Himalayan Circle, BSI, Gangtok for permission to consult herbarium specimens and, Director, CSIR-NEIST for the all the logistics and support; and CSIR, Govt. of India, New Delhi for overall support.

Author information

Authors and Affiliations

Authors

Contributions

PK did the modeling, collected most of the references, and initially drafted the manuscript for most of the sections. BD prepared the morphological matrix and did the ancestral character tracing, collected the references on taxonomy, ethnobotany and drafted the manuscript in part. MK collected the distributional data and converted the geo-references. DB conceptualized and designed the whole study, corrected the tables, drafted and edited the final manuscript.

Corresponding author

Correspondence to Dipanwita Banik.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors regarding research and funding in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2059 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konwar, P., Das, B., Kumar, M. et al. Predicting the impact of climate change on habitat suitability and morphological traits of Begonia aborensis Dunn in Northeastern India: an endemic taxon of Indo-Myanmar hotspot. Braz. J. Bot 46, 667–680 (2023). https://doi.org/10.1007/s40415-023-00895-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-023-00895-8

Keywords

Navigation