Skip to main content
Log in

Molecular network technology for discovering new alkaloids glycosides from Goji berry

  • Biochemistry & Physiology - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Goji berry, the fruits of Lycium barbarum L., in Chinese name of gouqizi, are very popular edible materials and traditional Chinese medicine (TCM) in China and overseas. In previous work, over 100 chemical constituents were characterized from Goji berry by systematical chromatographic separation and capillary electrophoresis, etc. However, it is not common on studying the glycosidic components of spermine alkaloids which may relate to the increasing sweet taste of varieties of Goji berry. This paper provided the discovery of thirty alkaloids including twenty-five glycosidic components from the aqueous extract of latest planted variety of Goji berry. Of which nineteen structures bear novel pentose glycosyl groups. The molecular networking based on the high performance liquid chromatography quadrupole flight ion mass spectrometry (HPLC-Q-TOF MS) data analysis were firstly used in the chemical studies of Goji berry, which should lay a foundation for the in-depth study of Goji berry drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  • Chen Y, Unger M, Ntai I, McClure RA, Albright JC, Thomson RJ, Kelleher NL (2013) Gobichelin A and B: mixed-ligand siderophores discovered using proteomics. Medchemcomm 4:233–238. https://doi.org/10.1039/c2md20232h

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Kong JB, Zhang L, Wang HH, Cao YG, Zeng MN, Feng WS (2021) Lycibarbarines A–C, three tetrahydroquinoline alkaloids possessing a Spiro-heterocycle moiety from the fruits of Lycium barbarum. Org Lett 23:858–862. https://doi.org/10.1021/acs.orglett.0c04092

    Article  CAS  PubMed  Google Scholar 

  • Chen YS, Lian YZ, Chen WC, Chang CC (2022) Lycium barbarum polysaccharides and capsaicin inhibit oxidative stress, inflammatory responses, and pain signaling in rats with dextran sulfate sodium-induced colitis. Int J Mol Sci 23:2423. https://doi.org/10.3390/ijms23052423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Committee CP (2020) Pharmacopoeia of the People's Republic of China: 2020 Edition (Volume I). Beijing: China Pharmaceutical Science and Technology Press

  • Dos Santos GS, Veiga AA, Carlotto J, Mello RG, Serrato RV, De Souza LM (2022) Identification and fingerprint analysis of novel multi-isomeric Lycibarbarspermidines and Lycibarbarspermines from Lycium barbarum L. by liquid chromatography with high-resolution mass spectrometry (UHPLC-Orbitrap). J Food Compos Anal 105:104194. https://doi.org/10.1016/j.jfca.2021.104194

    Article  CAS  Google Scholar 

  • Editorial Board CMM (1996) Chinese Materia Medica. Shanghai: Shanghai Science and Technology Press

  • Funayama S, Yoshida K, Konno C, Hikino H (1980) Structure of kukoamine A, a hypotensive principle of Lycium chinense root barks1. Tetrahedron Lett 21:1355–1356

    Article  CAS  Google Scholar 

  • Funayama S, Zhang GR, Nozoe S (1995) Kukoamine B, a spermine alkaloid from Lycium chinense. Phytochemistry 38:1529–1531

    Article  CAS  Google Scholar 

  • Gan L, Zhang SH, Yang XL, Xu HB (2004) Immunomodulation and antitumor activity by a polysaccharide-protein complex from Lycium barbarum. Int Immunopharmacol 4:563–569. https://doi.org/10.1016/j.intimp.2004.01.023

    Article  CAS  PubMed  Google Scholar 

  • Jiang ZB, Ren WC, Shi YY, Li XX, Lei X, Fan JH, Hong B (2018) Structure-based manual screening and automatic networking for systematically exploring sansanmycin analogues using high performance liquid chromatography tandem mass spectroscopy. J Pharm Biomed Anal 158:94–105. https://doi.org/10.1016/j.jpba.2018.05.024

    Article  CAS  PubMed  Google Scholar 

  • Jiang ZB, Chen YX, Chen JZ, Lu X, Ma XL (2020) Exploring chemical structures from cortex Lycii, based on manual and automatic analysis of the HPLC-Q-TOF-MS data. Nat Prod Commun 15:1–11. https://doi.org/10.1177/1934578X20911255

    Article  Google Scholar 

  • Jiang ZB, Guo HH, Hu YQ, Zhou LR, Deng CF, Nan ZD, Wu XL (2022) Classification of diterpenoid alkaloids from Aconitum kusnezoffii Reichb. by liquid chromatography-tandem mass spectrometry-based on molecular networking. J Sep Sci 45:739–751. https://doi.org/10.1002/jssc.202100651

    Article  CAS  PubMed  Google Scholar 

  • Jin HL, Zhao JQ, Zhou W, Shen A, Yang F, Liu Y, Liu Y (2015) Preparative separation of a challenging anthocyanin from Lycium ruthenicum Murr. by two-dimensional reversed-phase liquid chromatography/hydrophilic interaction chromatography. RSC Adv 5:62134–62141

    Article  CAS  Google Scholar 

  • Liu JF, Gong Y, Yang JL, Di DL (2022) Advance on alkaloids of Lycium genus. Chin Sci Bull 67:332–350. https://doi.org/10.1360/TB-2021-0229

    Article  Google Scholar 

  • Ma XL, Chen JZ, Lu X, Zhe YT, Jiang ZB (2021) HPLC coupled with quadrupole time of flight tandem mass spectrometry for analysis of glycosylated components from the fresh flowers of two congeneric species: Robinia hispida L. and Robinia pseudoacacia L. J Sep Sci 44:1537–1551. https://doi.org/10.1002/jssc.202001068

    Article  CAS  PubMed  Google Scholar 

  • Masci A, Carradori S, Casadei MA, Paolicelli P, Petralito S, Ragno R, Cesa S (2018) Lycium barbarum polysaccharides: extraction, purification, structural characterisation and evidence about hypoglycaemic and hypolipidaemic effects. A Rev Food Chem 254:377–389. https://doi.org/10.1016/j.foodchem.2018.01.176

    Article  CAS  Google Scholar 

  • Qian D, Yang J, Kang LP, Ji RF, Huang LQ (2017) Variation of sweet chemicals in different ripening stages of wolfberry fruits. Chin Herbal Med 9:329–334. https://doi.org/10.1016/S1674-6384(17)60112-6

    Article  Google Scholar 

  • Qian D, Chen J, Lai C, Kang L, Xiao S, Song J, Xie J, Huang L (2020) Dicaffeoyl polyamine derivatives from bitter goji: contribution to the bitter taste of fruit. Fitoterapia 143:104543. https://doi.org/10.1016/j.fitote.2020.104543

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Liang TS, Liu YL, Ding GT, Zhang FM, Ma ZR (2019) Extraction, structural characterization, and biological functions of Lycium barbarum polysaccharides: a review. Biomolecules 9:389. https://doi.org/10.3390/biom9090389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tse RT, Wong CY, Chiu PK, Ng CF (2022) The potential role of spermine and its acetylated derivative in human malignancies. Int J Mol Sci 23:1258. https://doi.org/10.3390/ijms23031258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CC, Chang SC, Inbaraj BS, Chen BH (2010) Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation of antioxidant activity. Food Chem 120:184–192. https://doi.org/10.1016/j.foodchem.2009.10.005

    Article  CAS  Google Scholar 

  • Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu WT, Crüsemann M, Boudreau PD, Esquenazi E, Sandoval-Calderón M, Kersten RD, Pace LA, Quinn RA, Duncan KR, Hsu CC, Floros DJ, Gavilan RG, Kleigrewe K, Northen T, Dutton RJ, Parrot D, Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P, Edlund A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw CC, Yang YL, Humpf HU, Maansson M, Keyzers RA, Sims AC, Johnson AR, Sidebottom AM, Sedio BE, Klitgaard A, Larson CB, Cristopher A Boya P, Torres-Mendoza D, Gonzalez DJ, Silva DB, Marques LM, Demarque DP, Pociute E, O’Neill EC, Briand E, Helfrich EJN, Granatosky EA, Glukhov E, Ryffel F, Houson H, Mohimani H, Kharbush JJ, Zeng Y, Vorholt JA, Kurita KL, Charusanti P, McPhail KL, Nielsen KF, Vuong L, Elfeki M, Traxler MF, Engene N, Koyama N, Vining OB, Baric R, Silva RR, Mascuch SJ, Tomasi S, Jenkins S, Macherla V, Hoffman T, Agarwal V, Williams PG, Dai J, Neupane R, Gurr J, Rodríguez AMC, Lamsa A, Zhang C, Dorrestein K, Duggan BM, Almaliti J, Allard PM, Phapale P, Nothias LF, Alexandrov T, Litaudon M, Wolfender JL, Kyle JE, Metz TO, Peryea T, Nguyen DT, VanLeer D, Shinn P, Jadhav A, Müller R, Waters KM, Shi W, Liu X, Zhang L, Knight R, Jensen PR, Palsson BO, Pogliano K, Linington RG, Gutiérrez M, Lopes NP, Gerwick WH, Moore BS, Dorrestein PC, Bandeira N (2016) Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol 34:828–837. https://doi.org/10.1038/nbt.3597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D, Li SY, Yeung CM, Chang RC, So KF, Wong D, Lo AC (2012) Lycium barbarum extracts protect the brain from blood-brain barrier disruption and cerebral edema in experimental stroke. PLoS ONE 7:e33596. https://doi.org/10.1371/journal.pone.0033596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao X, Peng Y, Xu LJ, Li L, Wu QL, Xiao PG (2011) Phytochemical and biological studies of Lycium medicinal plants. Chem Biodivers 8:976–1010. https://doi.org/10.1002/cbdv.201000018

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Zhang L, Zhang P, Zhi J, Xing R, He L (2020) Lycium barbarum polysaccharides protect mice from hyperuricaemia through promoting kidney excretion of uric acid and inhibiting liver xanthine oxidase. Pharm Biol 58:944–949. https://doi.org/10.1080/13880209.2020.1817951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan HJ, Yuan HM, Liu F, Zhao X, Wu X, Dong L, Liu L, Zhang W, He J, Wang X (2017) Study on bitter taste character of wild Ningxia wolfberry in China. J Plant Genetic Res 5:985–994

    Google Scholar 

  • Zhang MH, Li F, Pokharel S, Ma T, Wang X, Wang Y, Lin R (2020) Lycium barbarum polysaccharide protects against Homocysteine-induced Vascular smooth muscle cell proliferation and phenotypic transformation via PI3K/Akt pathway. J Mol Histol 51:629–637. https://doi.org/10.1007/s10735-020-09909-1

    Article  CAS  PubMed  Google Scholar 

  • Zhao JH, Li HX, Xi WP, An W, Niu L, Cao Y, Yin Y (2015) Changes in sugars and organic acids in wolfberry (Lycium barbarum L.) fruit during development and maturation. Food Chem 173:718–724. https://doi.org/10.1016/j.foodchem.2014.10.082

    Article  CAS  PubMed  Google Scholar 

  • Zheng GQ, Zheng ZY, Xu X, Hu ZH (2010) Variation in fruit sugar composition of Lycium barbarum L. and Lycium chinense mill. of different regions and varieties. Biochem Syst Ecol 38:275–284

    Article  CAS  Google Scholar 

  • Zhou ZQ, Fan HX, He RR, Sun WY, Xiao J, Bao XF, Gao H (2016a) Four new dicaffeoylspermidine derivatives from Lycium barbarum. World J Tradit Chin Med 2:1–5. https://doi.org/10.15806/j.issn.2311-8571.2016.0028

    Article  Google Scholar 

  • Zhou ZQ, Fan HX, He RR, Xiao J, Tsoi B, Lan KH, Gao H (2016b) Lycibarbarspermidines A–O, new dicaffeoylspermidine derivatives from wolfberry, with activities against Alzheimer’s disease and oxidation. J Agric Food Chem 64:2223–2237. https://doi.org/10.1021/acs.jafc.5b05274

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank professor Fang Huan and Chen Yongxin of Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China, Key Laboratory of Petroleum Resources, Lanzhou, China, for their mass spectrometry testing work. Thanks to Professor Ren Yufeng, School of Bioscience and Engineering, Northern Minzu University, for providing Plant identification.

Funding

This work was supported by the Key Research and Development Program of Ningxia province (2022BEG03159); the Natural Science Foundation of Ningxia province (2022AAC03473); the Scientific Research Projects in 2022 at North Minzu University (2022XYHG03).

Author information

Authors and Affiliations

Authors

Contributions

JM contributed to project administration, conceptualization, methodology, and supervision; XLM contributed to investigation and data curation; ZDN contributed to software, validation; CLL contributed to sample collection. ZBJ and JM contributed to writing—original draft preparation, visualization; XLM and ZBJ contributed to writing—reviewing and editing the manuscript. All the authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Xiao-Li Ma or Zhi-Bo Jiang.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 626 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Ma, XL., Jiang, ZB. et al. Molecular network technology for discovering new alkaloids glycosides from Goji berry. Braz. J. Bot 46, 573–582 (2023). https://doi.org/10.1007/s40415-023-00893-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-023-00893-w

Keywords

Navigation