Abstract
The genus Baccharis (Asteraceae) comprises over 440 species distributed along North and South America. Some species of this genus have remarkable invasiveness, and one of these species is the South American shrub Baccharis dracunculifolia DC. Most of the introductions of non-indigenous species are held indirectly through trade, so it is believed that this species could become invasive worldwide with a particular interest in the North American continent because of the increasing sale of products derived from honey to this continent. The resin extracted from B. dracunculifolia is the leading source for preparing the green propolis produced in Southeastern Brazil. Thus, the main objective of this work is to apply an approach based on distribution modeling to investigate possible areas of high environmental suitability for B. dracunculifolia in the North American continent and the potential to the entire globe using current and two future scenaries. Our results show many areas of environmental suitability for B. dracunculifolia. This species can invade over 33 countries distributed into five continents, including North America, some of the most critical parts of the southern USA, and large areas in Mexico. Since the best way of countering biological invasions is prevention, we propose that the introduction of this species should be monitored.








Similar content being viewed by others
References
Abad MJ, Bermejo P (2007) Baccharis (Compositae): a review update. ARKIVOC 2:76–96
Abemel (Brazilian Association of Honey Exporters) (2015) Dados da Exportação de Mel. https://brazilletsbee.com.br/. Accessed 01 Mar 2022
Adelino JRP, Heringer G, Diagne C, Courchamp F, Faria LDB, Zenni RD (2021) The economic costs of biological invasions in Brazil: a first assessment. NeoBiota 67:349–374. https://doi.org/10.3897/neobiota.67.59185
Alencar SM, Aguiar CL, Paredes-Guzmán J, Park YK (2005) Composição química de Baccharis dracunculifolia, fonte botânica das própolis dos estados de São Paulo e Minas Gerais. Ciência Rural 35:909–915
Allain L, Grace JB (2001) Changes in density and height of the shrub Baccharis halimifolia following burning in coastal tallgrass prairie. In: Proceedings of the 17th North American Prairie Conference. 66–72
Altesor A, Oesterheld M, Leoni E, Lezama F, Rodríguez C (2005) Effect of grazing on community structure and productivity of a Uruguayan grassland. Plant Ecol 179:83–91. https://doi.org/10.1007/s11258-004-5800-5
Amancio MB, Oki Y, Fernandes GW, Rago C, Goes-Neto A, Azevedo VAC (2021) Innovation and knowledge of prospective studies on the genus Baccharis. In Baccharis: from evolutionary and ecological aspects to social uses and medicinal applications. Springer International Publishing, Switzerland. pp 475–503. https://doi.org/10.1007/978-3-030-83511-8_19.
Avendaño D, Caballero M, Vázquez G (2021) Ecological distribution of Stephanodiscus niagarae Ehrenberg in central Mexico and niche modeling for its last glacial maximum habitat suitability in the Nearctic realm. J Paleolimnol 66:1–14. https://doi.org/10.1007/s10933-021-00178-w
Bacher S, Blackburn TM, Essl F, Genovesi P, Heikkilä J, Jeschke JM, Jones G, Keller R, Kenis M, Kueffer C, Martinou AF, Nentwig W, Pergl J, Pyšek P, Rabitsch W, Richardson DM, Roy HE, Saul WC, Scalera R, Kumschick S (2018) Socio-economic impact classification of alien taxa (SEICAT). Methods Ecol Evol 9:159–168. https://doi.org/10.1111/2041-210X.12844
Barbosa NPU, Fernandes WW, Carneiro MAA, Júnior LAC (2010) Distribution of non-native invasive species and soil properties in proximity to paved roads and unpaved roads in a quartzitic mountainous grassland of southeastern Brazil (rupestrian fields). Biol Invasions 12(11):3745–3755. https://doi.org/10.1007/s10530-010-9767-y
Barbosa NPU, Fernandes GW, Sanchez-Azofeifa A (2015) A relict species restricted to a quartzitic mountain in tropical America: An example of microrefugium? Acta Botanica Brasílica 29:299–309. https://doi.org/10.1590/0102-33062014abb3731
Bazzichetto M, Malavasi M, Bartak V, Acosta ATR, Rocchini D, Carranza ML (2018) Plant invasion risk: a quest for invasive species distribution modelling in managing protected areas. Ecol Ind 95:311–319. https://doi.org/10.1016/j.ecolind.2018.07.046
Blackburn TM, Duncan RP (2001) Determinants of establishment success in introduced birds. Nature 414:195–197. https://doi.org/10.1038/35102557
Calleja F, Ondiviela B, Juanes JA (2019a) Invasive potential of Baccharis halimifolia: experimental characterization of its establishment capacity. Environ Exp Bot 162:444–454. https://doi.org/10.1016/j.envexpbot.2019.03.020
Calleja F, Ondiviela B, Galván C, Recio M, Juanes JA (2019b) Mapping estuarine vegetation using satellite imagery: the case of the invasive species Baccharis halimifolia at a Natura 2000 site. Cont Shelf Res 174:35–47. https://doi.org/10.1016/j.csr.2019.01.002
Caño L, García-Magro D, Herrera M (2013) Phenology of the dioecious shrub Baccharis halimifolia along a salinity gradient: consequences for the invasion of Atlantic subhalophilous communities. Plant Biosyst 147:1128–1138. https://doi.org/10.1080/11263504.2013.861537
Caño L, Campos JA, García-Magro D (2012) Replacement of estuarine communities by an exotic shrub: distribution and invasion history of Baccharis halimifolia in Europe. Biol Invasions 15:1183–1188. https://doi.org/10.1007/s10530-012-0360-4
Caño L, Campos JA, García-Magro D, Herrera M (2014) Invasiveness and impact of the non-native shrub Baccharis halimifolia in sea rush marshes: fine-scale stress heterogeneity matters. Biol Invasions 16:2063–2077. https://doi.org/10.1007/s10530-014-0648-7
Caño L, Fuertes-Mendizabal T, García-Baquero G, Herrera M, Begoña González-Moro MB (2016) Plasticity to salinity and transgenerational effects in the nonnative shrub Baccharis halimifolia: insights into an estuarine invasion. Am J Bot 103:808–820. https://doi.org/10.3732/ajb.1500477
Carrol SP, Klassen SP, Dingle H (1998) Rapidly evolving adaptations to host ecology and nutrition in the soapberry bug. Evol Ecol 12:955–968. https://doi.org/10.1023/A:1006568206413
CGIAR (2021) Spatial downscaling Data. www.ccafs-climate.org/data_spatial_downscaling. Accessed on 09 May 2021
Cobos ME, Townsend Peterson A, Barve N, Osorio-Olvera L (2019) Kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ 2:1–15. https://doi.org/10.7717/peerj.6281
Committee on the Scientific Basis for Predicting the Invasive Potential of Non-indigenous Plants and Plant Pests in the United States (2002) Predicting Invasions of Non-indigenous Plants and Plant Pests. Washington, National Academy Press. https://www.ncbi.nlm.nih.gov/books/NBK207526 doi:https://doi.org/10.17226/10259. Accessed on 09 May 2021
Crystal-Ornelas R, Hudgins EJ, Cuthbert RN, Haubrock PJ, Fantle-Lepczyk J, Angulo E, Kramer AM, Ballesteros-Mejia L, Leroy B, Leung B, López-López E, Diagne C, Courchamp F (2021) Economic costs of biological invasions within North America. NeoBiota 67:485–510. https://doi.org/10.3897/neobiota.67.58038
Darwin C (1859) The origin of species (reprinted 1958). Mentor Books, New York, p 479
Davis SD, Mooney HA (1985) Comparative water relations of adjacent California shrub and grassland communities. Oecologia 66:522–529. https://doi.org/10.1007/BF00379344
Duarte A, Whitlock SL, Peterson JT (2018) Species distribution modeling. Encyclop Ecol 6:189–198. https://doi.org/10.1016/B978-0-12-409548-9.10572-X
Dukes JSS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139. https://doi.org/10.1016/S0169-5347(98)01554-7
Duncan RP, Bomford M, Forsyth DM, Conibear L (2001) High predictability in introduction outcomes and the geographical range size of introduced Australian birds: a role for climate. J Anim Ecol 70:621–632. https://doi.org/10.1046/j.1365-2656.2001.00517.x
Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire REE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
Elith J (2017) Predicting distributions of invasive species. In: Invasive species: risk assessment and management. Cambridge University Press, United Kingdom
Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
Escobar LE, Lira-Noriega A, Medina-Vogel G, Townsend Peterson A (2014) Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference. Geospat Health 9:221–229. https://doi.org/10.4081/gh.2014.19
Espírito-Santo MM, Madeira BG, Neves FS, Faria ML, Fagundes M, Fernandes GW (2003) Sexual differences in reproductive phenology and their consequences for the demography of Baccharis dracunculifolia (Asteraceae), a dioecious tropical shrub. Ann Bot 91:13–19. https://doi.org/10.1093/aob/mcg001
Estay SA, Labra FA, Sepulveda RD, Bacigalupe LD (2014) Evaluating habitat suitability for the establishment of Monochamus spp. through climate-based niche modeling. PLoS ONE 9:1–7. https://doi.org/10.1371/journal.pone.0102592
Fagundes M, Fernandes GW (2011) Insect herbivores associated with Baccharis dracunculifolia (Asteraceae): responses of gall-forming and free-feeding insects to latitudinal variation. Rev Biol Trop 59:1419–1432
Fagundes M, Faria ML, Fernandes GW (2001) Efeitos da distribuição de Baccharis dracunculifolia (Asteraceae) na abundância e no parasitismo de galhas de Neopelma baccharidis (Homoptera: Psylidae). Unimontes Científica 1:97–103
Fagundes M, Neves FS, Fernandes GW (2005) Direct and indirect interactions involving ants, insect herbivores, parasitoids, and the host plant Baccharis dracunculifolia (Asteraceae). Ecol Entomol 30:28–35. https://doi.org/10.1111/j.0307-6946.2005.00668.x
Fantle-Lepczyk JE, Haubrock PJ, Kramer AM, Cuthbert RN, Turbelin AJ, Crystal-Ornelas R, Diagne C, Courchamp F (2022) Economic costs of biological invasions in the United States. Sci Total Environ 806:151318. https://doi.org/10.1016/j.scitotenv.2021.151318
Faria J, Prestes ACL, Moreu I, Cacabelos E, Martins GM (2022) Dramatic changes in the structure of shallow-water marine benthic communities following the invasion by Rugulopteryx okamurae (Dictyotales, Ochrophyta) in Azores (NE Atlantic). Mar Pollut Bull 175:113358. https://doi.org/10.1016/j.marpolbul.2022.113358
Feng X, Park DS, Walker C, Peterson AT, Merow C, Papeş M (2019) A checklist for maximizing reproducibility of ecological niche models. Nat Ecol Evol 3:1382–1395. https://doi.org/10.1038/s41559-019-0972-5
Fernandes GW, Oki Y, Barbosa M (2021) Baccharis: from evolutionary and ecological aspects to social uses and medicinal applications. Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-030-83511-8_1
Fernandes GW, Oki Y, Belmiro MS, Resende FM, Correa-Jr A, Azevedo JR (2018) Multitrophic interactions among fungal endophytes, bees, and Baccharis dracunculifolia: resin tapering for propolis production leads to endophyte infection. Arthropod-Plant Interact 12:329–337. https://doi.org/10.1007/s11829-018-9597-x
Ficetola GF, Thuiller W, Miaud C (2007) Prediction and validation of the potential global distribution of a problematic alien invasive species – the American bullfrog. Divers Distrib 13:476–485. https://doi.org/10.1111/j.1472-4642.2007.00377.x
Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086
Fitzpatrick MC, Weltzin JF, Sanders NJ, Dunn RR (2007) The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range? Glob Ecol Biogeogr 16:24–33. https://doi.org/10.1111/j.1466-8238.2006.00258.x
Forsyth DM, Duncan RP, Bomford M, Moore G (2004) Climatic suitability, life-history traits, introduction effort, and the establishment and spread of introduced mammals in Australia. Conserv Biol 18:557–569. https://doi.org/10.1111/j.1523-1739.2004.00423.x
Fried G, Caño L, Brunel S, Beteta E, Charpentier A, Herrera M, Starfinger U, Dane Panetta F (2016) Monographs on invasive plants in Europe: Baccharis halimifolia L. Botany Letters 163:127–153. https://doi.org/10.1080/23818107.2016.1168315
GBIF (2021) Baccharis dracunculifolia DC. GBIF Occurrence data. www.gbif.org/occurrence/download/0271834-200613084148143. Accessed on 09 May 2021
Gerlach JD (2000) A model experimental system for predicting the invasion success and ecosystem impacts of non-indigenous summer-flowering annual plants in California’ ‘s Central Valley grasslands and oak woodlands. PhD dissertation, University of California, Davis, CA
Giovanelli JGR, Araújo CO, Haddad CFB, Alexandrino J (2008a) Modelagem do nicho ecológico de Phyllomedusa ayeaye (Anura: Hylidae): previsão de novas áreas de ocorrência para uma espécie rara. Neotrop Biol Conserv 3:59–65
Giovanelli JGR, Haddad CFB, Alexandrino J (2008b) Predicting the potential distribution of the alien invasive American bullfrog (Lithobates catesbeianus) in Brazil. Biol Invasions 10:585–590. https://doi.org/10.1007/s10530-007-9154-5
Gomes V, Fernandes GW (2002) Germinação de aquênios de Baccharis dracunculifolia D. C. (Asteraceae). Acta Botanica Brasilica 16:421–427. https://doi.org/10.1590/S0102-33062002000400005
Gong X, Chen Y, Wang T, Jiang X, Hu X, Feng J (2020) Double-edged effects of climate change on plant invasions: ecological niche modeling global distributions of two invasive alien plants. Sci Total Environ 740:139933. https://doi.org/10.1016/j.scitotenv.2020.139933
Grace J (1987) Climatic tolerance and the distribution of plants. New Phytol 106:113–130. https://doi.org/10.1111/j.1469-8137.1987.tb04686.x
Grant SNC (2020) Field Museum of Natural History (Botany) Seed Plant Collection. Version 11.12. Field Museum. Occurrence dataset. GBIF. Accessed on 09 May 2022
Heiden G (2021) Baccharis: diversity and distribution. In: Fernandes GW, Oki Y, Barbosa M (eds) Baccharis: from evolutionary and ecological aspects to social uses and medicinal applications. Springer, pp 23–80. https://doi.org/10.1007/978-3-030-83511-8_2
Hernandez PA, Graham CH, Máster LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785. https://doi.org/10.1111/j.0906-7590.2006.04700.x
Hijmans RJ (2021) Geographic data analysis and modeling [R package raster version 3.4-10]. Hobbs RJ, Mooney HA 1986. Community changes following shrub invasion of grassland. Oecologia 70:508–513. https://doi.org/10.1007/BF00379896
Hirzel AH, Le Lay G (2008) Habitat suitability modelling and niche theory. J Appl Ecol 45:1372–1381. https://doi.org/10.1111/j.1365-2664.2008.01524.x
Jiménez-Valverde A, Peterson AT, Soberón J, Overton JM, Aragón P, Lobo JM (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797. https://doi.org/10.1007/s10530-011-9963-4
Kaufmann RK, Kauppi H, Mann ML, Stock JH (2011) Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc Natl Acad Sci USA 108:11790–11793. https://doi.org/10.1073/pnas.1102467108
Kearney M, Phillips BL, Tracy CR, Christian KA, Betts G, Porter WP (2008) Modelling species distributions without using species distributions: the Cane Toad in Australia under current and future climates. Ecography 31:423–434. https://doi.org/10.1111/j.0906-7590.2008.05457.x
Koch RL, Venette RC, Hutchison WD (2006) Invasions by Harmonia axyridis (Pallas) in the Western Hemisphere: implications for South America. Neotrop Entomol 35:421–434
Kornas J (1990) Plant invasions in central Europe: historical and ecological aspects. In: di Castri F, Hansen AJ, Debussche M Biological invasions in Europe and the Mediterranean basin. Dordrecht, Kluwer Academic Publishers, pp 19–36. https://doi.org/10.1007/978-94-009-1876-4_2
Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, Kenkel B, Team RC (2020) Package ‘caret’ The R Journal. 223: 1–7
Lázaro-Lobo A, Ervin G, Caño L, Panetta D (2021) Biological invasions by Baccharis. In Baccharis: from evolutionary and ecological aspects to social uses and medicinal applications, edited by Fernandes GW, Oki Y, Barbosa M Springer International Publishing, Switzerland. pp 185–214. https://doi.org/10.1007/978-3-030-83511-8_8
Levine JM, Vilà M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc Royal Soc B Biol Sci 270:775–781. https://doi.org/10.1098/rspb.2003.2327
Loayza I, Abujder D, Aranda R, Jakupovic J, Colin G, Deslauriers H, Jean F (1995) Essential oils of Baccharis salicifolia, B. latifolia and B. dracunculifolia. Phytochemistry 38:381–389. https://doi.org/10.1016/0031-9422(94)00628-7
Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228. https://doi.org/10.1016/j.tree.2005.02.004
Lorenzi H (1991) Plantas daninhas do Brasil: terrestres, aquáticas, parasitas, tóxicas e medicinais. Nova Odessa, Editora Plantarum, pp 440
Ludsin SA, Wolfe AD (2001) Biological invasion theory: Darwin’s contributions from the origin of species. Bioscience 51:780–789. https://doi.org/10.1641/0006-3568(2001)051[0780:BITDSC]2.0.CO;2
Malacrinò A, Sadowski VA, Martin TK, De Oliveira NC, Brackett IJ, Feller JD, Harris KJ, Heredia OC, Vescio R, Bennett AE (2020) Biological invasions alter environmental microbiomes: a meta-analysis. PLoS ONE 15:1–12. https://doi.org/10.1371/journal.pone.0240996
Marques AR, Fernandes GW, Reis IA, Assunção RM (2002) Distribution of adult male and female Baccharis concinna (Asteraceae) in the rupestrian fields of Serra Do Cipó, Brazil. Pl Biol 4(1):94–103. https://doi.org/10.1055/s-2002-20441
Minteguiaga M, González A, Catalán CAN, Dellacassa E (2021) Relationship between Baccharis dracunculifolia DC. And B. microdonta DC. (Asteraceae) by their different seasonal volatile expression. Chem Biodivers 18:1–6. https://doi.org/10.1002/cbdv.202100064
Mooney HA, Hobbs RJ (1986) Resilience at the individual plant level. In: Dell B, Hopkins AJM, Lamont BB Resilience in Mediterranean-type ecosystems. Dordrecht, Kluwer Academic Publishers, 16: 65–82. https://doi.org/10.1007/978-94-009-4822-8_5
Mooney HA, Bullock SH, Medina E (1995) Seasonally dry tropical forests. Cambridge University Press, Cambridge
Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol Evol 5:1198–1205. https://doi.org/10.1111/2041-210x.12261
Navarro-Racines C, Tarapues J, Thornton P, Jarvis A, Ramirez-Villegas J (2020) High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci Data 7:1–14. https://doi.org/10.1038/s41597-019-0343-8
Nyári A, Ryall C, Peterson AT (2006) Global invasive potential of the house crow Corvus splendens based on ecological niche modelling. J Avian Biol 37:306–311. https://doi.org/10.1111/j.2006.0908-8857.03686.x
Obiakara MC, Etaware PM, Chukwuka KS (2020) Maximum entropy niche modelling to estimate the potential distribution of phytophthora megakarya brasier & M. J. Griffin (1979) in tropical regions. Eur J Ecol 6:23–40
Oliveira FIS, Oki Y, Resende FM, Angrisano P, Rosa DCP, Arantes-Garcia L, Fernandes GW (2021) From innovation to market: an analysis of the propolis production chain. In: Fernandes, G.W.; Oki, Y. & Barbosa, M. (editors) Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-030-83511-8_23
Oshea P (2021) Rspatial: spatial thinning and more (0.3.0). Github. https://github.com/oshea-patrick/RSpatial. Accessed on 09 May 2022
Owens HL, Campbell LP, Dornak LL, Saupe EE, Barve N, Soberón J, Ingenloff K, Lira-Noriega A, Hensz CM, Myers CE, Peterson AT (2013) Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol Model 263:10–18. https://doi.org/10.1016/j.ecolmodel.2013.04.011
Pacifici M, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, Scheffers BR, Hole DG, Martin TG, Akçakaya HR, Corlett RT, Huntley B, Bickford D, Carr JA, Hoffmann AA, Midgley GF, Pearce-Kelly P, Pearson RG, Williams SE, Rondinini C (2015) Assessing species vulnerability to climate change. Nat Clim Chang 5:215–225. https://doi.org/10.1038/nclimate2448
Papes M, Peterson AT (2003) Predicting the potential invasive distribution for Eupatorium adenophorum Spreng. in China. J Wuhan Bot Res 21:137–142
Parolo G, Rossi G, Ferrarini A (2008) Toward improved species niche modelling: Arnica montana in the Alps as a case study. J Appl Ecol 45:1410–1418. https://doi.org/10.1111/j.1365-2664.2008.01516.x
Paudel S, Battaglia LL (2013) Germination responses of the invasive triadica sebifera and two co-occurring native woody species to elevated salinity across a Gulf Coast transition ecosystem. Wetlands 33(3):527–535. https://doi.org/10.1007/s13157-013-0410-4
Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371. https://doi.org/10.1046/j.1466-822X.2003.00042.x
Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x
Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. Bioscience 51:363–371. https://doi.org/10.1641/0006-3568(2001)051[0363:PSIUEN]2.0.CO;2
Peterson AT (2006) Uses and requirements of ecological niche models and related distributional models. Biodiver Inform 3:59–72
Peterson AT, Scachetti-Pereira R, Kluza DA (2003) Assessment of invasive potential of Homalodisca coagulata in western North America and South America. Biota Neotrop 3:1–7
Peterson AT, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267. https://doi.org/10.1126/science.285.5431.1265
Phillips SJ, Anderson RP, Schapire REE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2018) Opening the black box: an open-source release of Maxent. Ecography 40(7):887–893. https://doi.org/10.1111/ecog.03049
Pyšek P, Pyšek A (1995) Invasion by Heracleum mantegazzianum in different habitats in the Czech Republic. J Veg Sci 6:711–718. https://doi.org/10.2307/3236442
Pyšek P (2003) Czech alien flora and the historical pattern of its formation: What came first to central Europe? Oecologia 135:122–130. https://doi.org/10.1007/s00442-002-1170-7
Pyšek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM, Carlton JT, Dawson W, Essl F, Foxcroft LC, Genovesi P, Jeschke JM, Kühn I, Liebhold AM, Mandrak NE, Meyerson LA, Pauchard A, Pergl J, Roy HE, Seebens H, Richardson DM (2020) Scientists’ warning on invasive alien species. Biol Rev 95:1511–1534. https://doi.org/10.1111/brv.12627
Qiao H, Escobar LE, Peterson TA (2017) Accessible areas in ecological niche comparisons of invasive species: recognized but still overlooked. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-01313-2
Qiao H, Peterson AT, Campbell LP, Soberón J, Ji L, Escobar LE (2016) NicheA: creating virtual species and ecological niches in multivariate environmental scenarios. Ecography 39:805–813. https://doi.org/10.1111/ecog.01961
R Core Team (2021) R: a language and environment for statistical computing. https://www.r-project.org/ Accessed on 09 May 2022
Raghavan RK, Heath ACG, Lawrence KE, Ganta RR, Peterson AT, Pomroy WE (2020) Predicting the potential distribution of Amblyomma americanum (Acari: Ixodidae) infestation in New Zealand, using maximum entropy-based ecological niche modelling. Exp Appl Acarol 80:227–245. https://doi.org/10.1007/s10493-019-00460-7
Raxworthy C, Martinez-Meyer E, Horning N, Nussbaum R, Schneider G, Ortega-Huerta MA, Peterson AT (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature 426:837–841. https://doi.org/10.1038/nature02205
Reichard SH, White P (2009) Horticulture as a pathway of invasive plant introductions in the United States. Bioscience 51:103–113. https://doi.org/10.1641/0006-3568(2001)051[0103:HAAPOI]2.0.CO;2
Richardson DM, Thuiller W (2007) Home away from home – objective mapping of high-risk source areas for plant introductions. Divers Distrib 13:299–323. https://doi.org/10.1111/j.1472-4642.2007.00337.x
Rodda GH, Jarnevich CS, Reed RN (2011) Challenges in identifying sites climatically matched to the native ranges of animal invaders. PLoS ONE 6:e14670. https://doi.org/10.1371/journal.pone.0014670
Saunders SP, Michel NL, Bateman BL, Wilsey CB, Dale K, LeBaron GS, Langham GM (2020) Community science validates climate suitability projections from ecological niche modeling. Ecol Appl 30:1–17. https://doi.org/10.1002/eap.2128
Schmidt KA, Whelan CJ (1999) Effects of exotic Lonicera and Rhamnus on songbird nest predation. Conserv Biol 13:1502–1506. https://doi.org/10.1046/j.1523-1739.1999.99050.x
Schrag AM, Bunn AG, Graumlich LJ (2008) Influence of bioclimatic variables on treeline conifer distribution in the Greater Yellowstone Ecosystem: implications for species of conservation concern. J Biogeogr 35:698–710. https://doi.org/10.1111/j.1365-2699.2007.01815.x
Sequeira AMM, Bouchet PJ, Yates KL, Mengersen K, Caley MJ (2018) Transferring biodiversity models for conservation: opportunities and challenges. Methods Ecol Evol 9:1250–1264. https://doi.org/10.1111/2041-210X.12998
Steven JP, Miroslav D, Robert ES (2021) Maxent software for modeling species niches and distributions (Version 3.4.1). http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on May 08 2021
Thapa S, Chitale V, Rijal SJ, Bisht N, Shrestha BB (2018) Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya. PLoS ONE 13:1–16. https://doi.org/10.1371/journal.pone.0195752
Thorn JS, Nijman V, Smith D, Nekaris KAI (2009) Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Divers Distrib 15:289–298. https://doi.org/10.1111/j.1472-4642.2008.00535.x
Valéry L, Hervé F, Jean-Claude L, Daniel S (2009) Invasive species can also be native. Trends Ecol Evol 24:585–586. https://doi.org/10.1016/j.tree.2009.07.003
Vivrette NJ, Muller CH (1977) Mechanism of invasion and dominance of coastal grassland by Mesembryanthenum crystallinum. Ecol Monogr 47:301–318. https://doi.org/10.2307/1942519
Von der Lippe M, Kowarik I (2008) Do cities export biodiversity? Traffic as dispersal vector across urban–rural gradients. Divers Distrib 14:18–25. https://doi.org/10.1111/j.1472-4642.2007.00401.x
Werneck FP, Costa GC, Colli GR, Prado DE, Sites JW (2010) Revisiting the historical distribution of seasonally dry tropical forests: new insights based on paleodistribution modelling and palynological evidence. Glob Ecol Biogeogr 20:272–288. https://doi.org/10.1111/j.1466-8238.2010.00596.x
Westman WE, Panetta FD, Stanely TD (1975) Ecological studies on reproduction and establishment of the woody weed, groundsel bush (Baccharis halimifolia L.: Asteraceae). Australian J Agricult Res 26(5):855–870. https://doi.org/10.1071/AR9750855
Williams K, Hobbs RJ, Hamburg SP (1987) Invasion of an annual grassland in Northern California by Baccharis pilularis ssp. Consanguinea Oecologia 72:461–465. https://doi.org/10.1007/BF00377580
Williamson M, Fitter A (1996) The characters of successful invaders. Biol Cons 78:163–170. https://doi.org/10.1016/0006-3207(96)00025-0
WorldClim (2021) Historical climate data. https://www.worldclim.org/data/worldclim21.html. Accessed on 09 May 2021
Zar JH (1996) Biostatistical analysis. Prentice Hall, New Jersey, p 944
Zavaleta ES (2005) Shrub establishment under experimental global changes in a California grasslands. Plant Ecol 184:53–63
Zenni RD, Essl F, García-Berthou E, McDermott SM (2021) The economic costs of biological invasions around the world. NeoBiota 67:1–9. https://doi.org/10.3897/neobiota.67.69971
Zhang H, Song J, Zhao H, Li M, Han W (2021) Predicting the distribution of the invasive species leptocybe invasa: combining Maxent and geodetector models. Insects 12:1–18. https://doi.org/10.3390/insects12020092
Zimmermann NE, Edwards TC, Graham CH, Pearman PB, Svenning JC (2010) New trends in species distribution modelling. Ecography 33:985–989. https://doi.org/10.1111/j.1600-0587.2010.06953.x
Zwiener VP, Lira-Noriega A, Grady CJ, Padial AA, Vitule JRS (2018) Climate change as a driver of biotic homogenization of woody plants in the Atlantic Forest. Glob Ecol Biogeogr 27:298–309. https://doi.org/10.1111/geb.12695
Acknowledgements
The authors thank D. Harisson and two anonymous reviewers for their suggestions on the text and Reserva Vellozia for the logistical support. Also, the National Laboratory for Ecological Analysis and Synthesis (LANASE, UNAM) gave us the access to use its cluster for obtaining results. We acknowledge the grants provided by CONACyT: 191982, UNAM-DGAPA-PAPIIT: IA105920, TA101022, TA100522, UNAM-DGAPA-PAPIME: PE101221, PE100521, PE101422, CNPq, FAPEMIG, GORCEIX, and Planta Ltda.
Author information
Authors and Affiliations
Contributions
GWF, NPUB, and UOP conceived and designed the study. UOP, NPUB, and GWF performed the modeling analyses. UOP, NPUB, and GWF analyzed the data and performed statistical analyses. UOP, NPUB, and GWF wrote the paper. All authors completed and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Data and source code availability
Occurrence data and source code for (1) cleaning and preparing occurrence data, (2) selecting and crop bioclimatic variables, and (3) calibrating models, extrapolation, and risk assessment are available in the following GitHub repository https://github.com/HpcDataLab/B.drancunculifolia_Invasion.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Olivares-Pinto, U., Barbosa, N.P.U. & Fernandes, G.W. Global invasibility potential of the shrub Baccharis drancunculifolia. Braz. J. Bot 45, 1081–1097 (2022). https://doi.org/10.1007/s40415-022-00817-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40415-022-00817-0

