Skip to main content

Morphological changes and antioxidative capacity of jute (Corchorus capsularis, Malvaceae) under different color light-emitting diodes

Abstract

Light quality is an important environmental factor controlling plant growth and development. On the other hand, jute (Corchorus capsularis L.) (jute) is sensitive to light quality and the factory production of C. capsularis for vegetable use and for transplanting in the field requires an investigation of the responses of C. capsularis to light quality. For this purpose, a pot experiment was conducted to investigate the effect of different color light-emitting diodes (LED) on growth, chlorophyll contents, reactive oxygen species (ROS) production and antioxidative defense system in C. capsularis under glasshouse environment. Different light-emitting diodes were used in this study: white light (WL), red light (RL), dark red light (DL), mixed dark red light (ML), blue light (BL) and orange light (OL). Results showed that RL, DL and ML significantly (P ≤ 0.05) increased plant height, crown length and plant biomass as compared with control (WL). All red-light spectrum, i.e., RL, DL and ML, improved leaf development, but decreased malondialdehyde (MDA) and proline contents as well as activity of superoxide dismutase (SOD) and peroxidase (POD). Meanwhile, chlorophyll contents were also augmented. In contrast, BL and OL reduced plant growth, biomass, chlorophyll contents and increased activities of SOD, POD, content of proline, MDA, and reduced the total soluble protein which suggested that plants grown under BL and OL undergo high environmental stress. These results depicted that all red lights, i.e., red, dark red, mixed red lights, can be effectively implemented for industrial production of C. capsularis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Arnon DT (1949) Copper enzyme in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Article  Google Scholar 

  • Bourget CM (2008) An introduction to light-emitting diodes. HortScience 43:1944–1946

    Article  Google Scholar 

  • Cai X, Kang XY (2011) In vitro tetraploid induction from leaf explants of Populus pseudosimonii Kitag. Plant Cell Rep 30:1771–1778

    CAS  PubMed  Article  Google Scholar 

  • Chen CN, Pan SM (1996) Assay of superoxide dismutase activity by combining electrophoresis and densitometry. Bot Bull Acad Sin 37:107–111

    CAS  Google Scholar 

  • Chen XL, Guo WZ, Xue XZ, Wang LC, Qiao XJ (2014) Growth and quality responses of ‘Green Oak Leaf’ lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp(FL) and light-emitting diode (LED). Sci Hortic 172:168–175

    Article  Google Scholar 

  • Cope KR, Bugbee B (2013) Spectral effects of three types of white light-emitting diodes on plant growth and development: absolute versus relative amounts of blue light. HortScience 48:504–509

    CAS  Article  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci. https://doi.org/10.3389/fenvs.2014.00053

    Article  Google Scholar 

  • Deng Y, Shao QS, Li CC, Ye XQ, Tang RS (2012) Differential responses of double petal and multi petal jasmine to shading: II. Morphology, anatomy and physiology. Sci Hortic 144:19–28

    Article  Google Scholar 

  • Fan XX, Xu ZG, Liu XY, Tang CM, Wang LW, Han XL (2013) Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci Hortic 153:50–55

    Article  Google Scholar 

  • Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Poly Sci 37:1552–1596

    CAS  Article  Google Scholar 

  • Fazal H, Abbasi BH, Ahmad N, Ali SS, Akbar F, Kanwal F (2016) Correlation of different spectral lights with biomass accumulation and production of antioxidant secondary metabolites in callus cultures of medicinally important Prunella vulgaris L. Photochem Photobiol. https://doi.org/10.1016/j.jphotobiol.2016.03.008

    Article  Google Scholar 

  • Fukuda N, Fujita M, Ohta Y, Sase S, Nishimura S, Ezura H (2008) Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf epinasty in geranium under red light condition. SciHortic 115:176–182

    Google Scholar 

  • Goins GD, Ruffe LM, Cranston NA, Yorio NC, Wheeler RM, Sager JC (2001) Salad crop production under different wavelengths of red light-emitting diodes (LEDs). In: SAE technical paper, 31st international conference on environmental systems, July 9–12, 2001, Orlando, Florida, USA, pp 1–9

  • Gupta SD, Jatothu B (2013) Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol Rep 7:211–220

    Article  Google Scholar 

  • Gyula P, Schafer E, Nagy F (2003) Light perception and signaling in higher plants. Curr Opin Plant Boil 6:446–452

    CAS  Article  Google Scholar 

  • Haliapas S, Yupsanis TA, Syros TD, Kofidis G, Economou AS (2008) Petunia 9 hybrida during transition to flowering as affected by light intensity and quality treatments. Acta Physiol Plant 30:807–815

    CAS  Article  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, NewYork, p 888

    Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  PubMed  Article  Google Scholar 

  • Hogewoning SW, Trouwborst G, Maljaars H, Poorter H, van Ieperen W, Harbinson J (2010) Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J Exp Bot 61(11):3107–3117

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Islam MM, Rahman MM (2008) Hand book on agricultural technologies of jute, kenaf and mesta crops, vol 1207. Bangladesh Jute Research Institute, Dhaka, pp 5–76

    Google Scholar 

  • Janda T, Majláth I, Szalai G (2014) Interaction of temperature and light in the development of freezing tolerance in plants. J Plant Growth Regul 30:460–469

    Article  CAS  Google Scholar 

  • Jiao K, Li X, Guo Y, Guan Y, Guo W, Luo D, Hu Z, Shen Z (2019) Regulation of compound leaf development in mungbean (Vigna radiata L.) by cupshaped Ccotyledon/no apical meristem (CUC/NAM) gene. Planta 249(3):765–774. https://doi.org/10.1007/s00425-018-3038-z

    PubMed  Article  CAS  Google Scholar 

  • Jishi T, Kimura K, Matsda R, Fujiwara K (2016) Effects of temporally shifted irradiation of blue and red LED light on cos lettuce growth and morphology. Sci Hortic 198:227–232

    Article  Google Scholar 

  • Kami C, Lorrain S, Homitschek P, Fankhauser C (2010) Chapter two: light regulated plant growth and development. Plant Dev 91:29–66

    CAS  Article  Google Scholar 

  • Kavi-Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Kim H-H, Goins GD, Wheeler RM, Sager JC (2004) Green-light supplementation for enhanced lettuce growth. PLoS ONE 9:85996

    Google Scholar 

  • Kobayashi K, Amore T, Lazaro M (2013) Light-emitting diodes (LEDs) for miniature hydroponic lettuce. Opt Photon J 3:74–77

    CAS  Article  Google Scholar 

  • Kozlowski R, Mieleniak B, Helwig M, Przepiera A (1999) Flame resistant lignocellulosic-mineral composite particleboards. Poly Deg Stabil 64:523–528

    CAS  Article  Google Scholar 

  • Li Q, Kubota C (2009) Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ Exp Bot 67:59–64

    CAS  Article  Google Scholar 

  • Lin C (2000) Photoreceptors and regulation of flowering time. Plant Physiol 12:39–50

    Article  Google Scholar 

  • Liu Y, Li X, Liu M, Cao B, Tan H, Wang J, Li X (2012) Responses of three different ecotypes of reed (Phragmites communis Trin.) to their natural habitats: leaf surface micro-morphology, anatomy, chloroplast ultrastructure and physio-chemical characteristics. Plant Physiol Biochem 51:159–167

    CAS  PubMed  Article  Google Scholar 

  • Liu Q, Zheng L, Zhao F, Shen Z, Zheng L (2015) Transcriptional and physiological analyses identify a regulatory role for hydrogen peroxide in the lignin biosynthesis of copper-stressed rice roots. Plant Soil 387:323–336

    CAS  Article  Google Scholar 

  • Ma X, Zhang X, Yang L, Tang M, Wang K, Wang L, Bai L, Song C (2019) Hydrogen peroxide plays an important role in PERK4-mediated abscisic acid regulated root growth in Arabidopsis. J Funct Plant Biol 46(2):165–174. https://doi.org/10.1071/FP18219

    CAS  Article  PubMed  Google Scholar 

  • Mastropasqua L, Borraccino G, Bianco L, Paciolla C (2012) Light qualities and dose influence ascorbate pool size in detached oat leaves. Plant Sci 183:57–64

    CAS  PubMed  Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668

    CAS  PubMed  Article  Google Scholar 

  • Michael A, Huo FS, Ulven CA (2012) Natural fiber reinforced composites. Poly Rev 52:259–320

    Article  CAS  Google Scholar 

  • Mitchell CA, Both A, Bourget CM, Kuboto C, Lopez RG, Morrow RC, Runkle S (2012) LEDs: the future of greenhouse lighting. Chron Hortic 55:6–12

    Google Scholar 

  • Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26

    CAS  PubMed  Article  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  PubMed  Article  Google Scholar 

  • Nanya K, Ishigami Y, Hikosaka S, Goto E (2012) Effects of blue and red light on stem elongation and flowering of tomato seedlings. Acta Hortic 956:261–266

    Article  Google Scholar 

  • Nascimento LB, Leal-Costa MV, Coutinho MA, Moreira Ndos S, Lage CL, Barbi Ndos S, Costa SS, Tavares ES (2013) Increased antioxidant activity and changes in phenolic profile of Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) specimens grown under supplemental blue light. Photochem Photobiol 89:391–399

    CAS  PubMed  Article  Google Scholar 

  • Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161:765–771

    CAS  Article  Google Scholar 

  • Rehman M, Ullah S, Bao Y, Wang B, Peng D, Liu L (2017) Light-emitting diodes: Whether an efficient source of light for indoor plants? Envi Sci Poll R. https://doi.org/10.1007/s11356-017-0333-3

    Article  Google Scholar 

  • Sæbø A, Krekling T, Appelgren M (1995) Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell Tissue Org 41:177–185

    Article  Google Scholar 

  • Sakharov IY, Aridilla GB (1999) Variation of peroxidase activity in cacao beans during their ripening, fermentation and drying. Food Chem 65:51–54

    CAS  Article  Google Scholar 

  • Shao QS, Wang HZ, Guo HP, Zhou AC, Huang YQ, Sun YL, Li MY (2014) Effects of shade treatments on photosynthetic characteristics, chloroplast ultrastructure, and physiology of Anoectochilus roxburghii. PLoS ONE 9:e85996

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 26:1–26. https://doi.org/10.1155/2012/217037

    CAS  Article  Google Scholar 

  • Shimizu H, Saito Y, Nakashima H, Miyasaka J, Ohdoi K (2011) Light environment optimization for lettuce growth in plant factory. In: Proceedings of the 18th IFAC world congress, vol 18, pp 605–609

    Article  Google Scholar 

  • Shohael A, Ali M, Yu K, Hahn E, Islam R, Paek K (2006) Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor. Process Biochem 41:1179–1185

    CAS  Article  Google Scholar 

  • Simlat M, Slezak P, Mos M, Warchol M, Skrzypek E, Ptak A (2016) The effect of light quality on seed germination, seedling growth and selected biochemical properties of Stevia rebaudiana Bertoni. Sci Hortic 211:295–304

    CAS  Article  Google Scholar 

  • Singh H, Singh JIP, Singh S, Dhawan V, Tiwari SK (2018) A brief review of jute fibre and its composites. Mater Today 5:28427–28437

    CAS  Google Scholar 

  • Stepien P, Klobus G (2005) Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiol Plant 125:31–40

    CAS  Article  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    CAS  PubMed  Article  Google Scholar 

  • Terfa MT, Solhaug KA, Gislerød HR, Olsen JE, Torre S (2013) A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa × hybrid but does not affect time to flower opening. Physiol Plant 148:146–159

    CAS  PubMed  Article  Google Scholar 

  • Thiruchitrambalam M, Athijayamani A, Sathiyamurth S, Thaheer ASA (2010) A review on the natural fiber-reinforced polymer composites for the development of roselle fiber-reinforced polyester composite. J Nat Fib 7:307–323

    CAS  Article  Google Scholar 

  • Wang YC, Zhang HX, Zhao B, Yuan XF (2001) Improved growth of Artemisia annua L. hairy roots and artemisinin production under red light conditions. Biotech Lett 23:1971–1973

    CAS  Article  Google Scholar 

  • Wojciechowska R, Kolton A, Dlugosz-Grochowska O, Knop E (2016) Nitrate content in Valerianella locusta L. plants is affected by supplemental LED lighting. Sci Hortic 211:179–186

    CAS  Article  Google Scholar 

  • Xuan Y, Duffy CJ, Rousseau AN, Bhatt G, Pardo A, Charron D (2016) Learning integrated modeling of coupled surface-subsurface flow. Earth Space Sci 3:190–206

    Article  Google Scholar 

  • Yu W, Liu Y, Song L, Jacobs DF, Du X, Ying Y, Shao Q, Wu J (2016) Effect of differential light quality on morphology, photosynthesis, and antioxidant enzyme activity in Camptotheca acuminata seedlings. J Plant Growth Regul. https://doi.org/10.1007/s00344-016-9625-y

    Article  Google Scholar 

  • Zoratti L, Karppinen K, Escobar AL, Häggman H, Jaakola L (2014) Light-controlled flavonoid biosynthesis in fruits. Front Plant Sci 5:1–16

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by China Agriculture Research System project (CARS-16-E10) and the National Natural Science Foundation of China (31571717).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Hamzah Saleem or Lijun Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saleem, M.H., Rehman, M., Zahid, M. et al. Morphological changes and antioxidative capacity of jute (Corchorus capsularis, Malvaceae) under different color light-emitting diodes. Braz. J. Bot 42, 581–590 (2019). https://doi.org/10.1007/s40415-019-00565-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-019-00565-8

Keywords

  • Growth
  • Proline
  • White jute