Skip to main content
Log in

Differential physiological responses of Tunisian wild grapevines (Vitis vinifera L. subsp. sylvestris) to NaCl salt stress

  • Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

The effects of salt stress on growth, organic and inorganic solute accumulation and chlorophyll florescence were studied on 3-month-old plants of six Tunisian wild grapevine accessions in order to identify salt tolerance mechanisms and select tolerant genotypes. Potted plants were grown under controlled conditions and irrigated for 14 days with 0, 100 and 150 mM NaCl Long Ashton nutrient solution. Salt begins to adversely affect plant growth and plant nutrition at 100 mM NaCl. Compared to control, shoot growth rates were 21.5% less for Khedhayria, Tebaba and Ouchteta, 33% for Djebba and Zouarâa and 49% for Houamdia. They were assigned to stomatal and non-stomatal factors. Stomatal conductance decreased after 1 day at 150 mM NaCl in all accessions in response to reduced leaf water potential. Leaves in tolerant accessions were well hydrated through efficient osmotic adjustment, sufficient potassium flux and selectivity of K+ versus Na+. In addition, salt tolerance of wild grapes was related to limiting Na+ transport to lamina and to compartmentalization of Cl on root and leaf vacuoles, improved in Tebaba and Khedhayria by the uptake of K+. At the same time, disturbances of the PSII have been noted as non-stomatal factors, and the most important photoprotective mechanism against photosynthetic damages was non-photochemical energy dissipation. However, chlorophyll fluorescence parameters were more stable in Tebaba compared to Khedhayria, thus showing better salt tolerance. Based on our results, wild grapevine accessions could be classified from most tolerant to most sensitive as follows: Tebaba > Khedhayria > Ouchteta > Zouarâa > Djebba > Houamdia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnold C, Schnitzler A, Parisot C, Maurin A (2010) Historical reconstruction of a relictual population of wild grapevines (Vitis vinifera L. ssp. sylvestris, Gmelin, Hegi) in a flood plain forest of the upper seine valley, France. River Res Appl 26:904–914

    Article  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  Google Scholar 

  • Askri H (2014) Réponses écophysiologiques et moléculaires de la vigne sauvage (Vitis vinifera L. ssp. sylvestris) tunisienne au stress salin. Dissertation, Faculté des Sciences de Tunis, Tunisie

  • Askri H, Daldoul S, Ben Ammar A, Rejeb S, Jardak R, Rejeb MN, Mliki A, Ghorbel A (2012) Short-term response of wild grapevines (Vitis vinifera L. ssp. sylvestris) to NaCl salinity exposure: changes of some physiological and molecular characteristics. Acta Physiol Plant 34:957–968

    Article  CAS  Google Scholar 

  • Azevedo-Neto AD, Tarquinio-Prisco J, Enéas-Filho J et al (2004) Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Braz J Plant Physiol 16:31–38

    Article  Google Scholar 

  • Baker E, Rosenqvist NR (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare D (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Björkman O, Demmig-Adams B (1994) Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 17–47

    Google Scholar 

  • Choné X, Van Leeuwen C, Dubourdieu D, Gaudille JP (2001) Stem water potential is a sensitive indicator of grapevine water status. Ann Bot 87:477–483

    Article  Google Scholar 

  • Çiçek N, Oukarroum A, Strasser RJ, Schansker G (2018) Salt stress effects on the photosynthetic electron transport chain in two chickpea lines differing in their salt stress tolerance. Photosynth Res 136:291–301

    Article  Google Scholar 

  • Daldoul S, Guillaumie S, Reustle GM, Krczal G, Ghorbel A, Delrot S, Mliki A, Höfer M (2010) Isolation and expression analysis of salt induced genes from contrasting grapevine (Vitis vinifera L.) cultivars. Plant Sci 179:489–498

    Article  CAS  Google Scholar 

  • Dardeniz A, Müftuoglu NM, Altay H (2006) Determination of salt tolerance of some American rootstocks. Bangladesh J Bot 35:143–150

    Google Scholar 

  • De Lucena CC, De Siqueira DL, Prieto Martinez HE, Cecon PR (2012) Salt stress change chlorophyll flourescence in Mango. Rev Bras Frutic 34:1245–1255

    Article  Google Scholar 

  • Fisarakis I, Chartzoulakis J, Stavrakas D (2001) Response of Sultana vines (Vitis vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agric Water Manag 51:13–27

    Article  Google Scholar 

  • Fisarakis I, Nikolaou N, Tsikalas P, Therios I, Stavrakas D (2005) Effect of salinity and rootstock on concentration of potassium, calcium, magnesium, phosphorus, and nitrate-nitrogen in Thompson seedless grapevine. J Plant Nutr 27:2117–2134

    Article  Google Scholar 

  • Genty B, Briantais JM, Baker NB (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 99:87–92

    Article  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom. https://doi.org/10.1155/2014/701596

    Article  Google Scholar 

  • Hadi MR, Karimi N (2012) The role of calcium in plants’ salt tolerance. J Plant Nutr 35:2037–2054

    Article  CAS  Google Scholar 

  • Hamrouni L, Hanana M, Abdelly C, Ghorbel A (2011) Exclusion du chlorure et inclusion du sodium: deux mécanismes concomitants de tolérance à la salinité chez la vigne sauvage Vitis vinifera subsp. sylvestris (var.Séjnène). Biotechnol Agron Soc Environ 15:387–400

    CAS  Google Scholar 

  • Hegi G (1966) Illustrierte Flora von Mittel-europa. Band V, Teil I, Verlag, Hamburg

  • Hewitt EJ, Smith TA (1975) Plant mineral nutrition. English Universities Press Ltd, London

    Google Scholar 

  • Hunt R (1990) Basic growth analysis. Unwin Hyman Press, London

    Book  Google Scholar 

  • Jogaiah S, Ramteke SD, Sharma J, Kumar UA (2014) Moisture and salinity stress induced changes in biochemical constituents and water relations of different grape rootstock cultivars. Int J Agron. https://doi.org/10.1155/2014/789087

    Article  Google Scholar 

  • Johansen C, Edwards DG, Loneragan JF (1970) Potassium fluxes during potassium absorption by intact barley plants of increasing potassium content. Plant Physiol 45:601–603

    Article  CAS  Google Scholar 

  • Kalaji HM, Govindjee Bosac K, Koscielniak J, Zuk-Gołaszewskae K (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Bot 73:64–72

    Article  CAS  Google Scholar 

  • Li X, An P, Inanaga S, Eneji AE, Tanabe K (2006) Salinity and defoliation effects on soybean growth. J Plant Nutr 29:1499–1508

    Article  CAS  Google Scholar 

  • Melgar JC, Syvertsen JP, Martinez V, Garci-Sanchez F (2008) Leaf gas exchange, water relations, nutrient content and growth in citrus and olive seedlings under salinity. Biol Plant 52:385–390

    Article  CAS  Google Scholar 

  • Mohammadkhani N, Heidari R, Abbaspour N, Rahmani F (2014) Evaluation of salinity effects on ionic balance and compatible solute contents in nine grape (Vitis L.) genotypes. J Plant Nutr 37:1817–1836

    Article  CAS  Google Scholar 

  • Moutinho-Pereira JM, Magalháes N, Torres De Castro LF, Chaves MM, Torres-Pereira JM (2001) Physiological responses of grapevine leaves to Bordeaux mixture under light stress conditions. Vitis 40:117–121

    CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Negrao S, Schmocke SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11

    Article  CAS  Google Scholar 

  • Omamt EN, Hammes PS, Robbertse PJ (2006) Differences in salinity tolerance for growth and water use efficiency in some amaranth (Amaranthus spp.) genotypes. N Z J Crop Hortic Sci 34:11–22

    Article  Google Scholar 

  • Ouerghi Z, Cornic G, Roudani M, Ayadi A, Brulfert J (2000) Effect of NaCl on photosynthesis of two wheat species (Triticum durum and T. aestivum) differing in their sensitivity to salt stress. J Plant Physiol 156:335–340

    Article  CAS  Google Scholar 

  • Patakas A, Nikolaou N, Zioziou K, Radoglou K, Noitsakis B (2002) The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Sci 163:361–367

    Article  CAS  Google Scholar 

  • Patakas A, Noitsakis B, Chouzouri A (2005) Optimization of irrigation water use in grapevines using the relationship between transpiration and plant water status. Agric Ecosyst Environ 106:253–259

    Article  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1995) Chlorophyll fluorescence as a non-invasive indicator for rapid assessment of in vivo photosynthesis. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 49–70

    Chapter  Google Scholar 

  • Shabalaa S, Pottosin I (2014) Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiol Plant 151:257–279

    Article  Google Scholar 

  • Shani U, Ben-Gal A (2005) Long-term response of grapevines to salinity: osmotic effects and ion toxicity. Am J Enol Vitic 56:148–154

    Google Scholar 

  • Singh PK, Mondal S, Bandana Bose (2013) Cross-talk signaling and survival strategies in plants under changing environment. In: Hemantaranjan A (ed) Advances in plant physiology. Scientific Publishers, Jodhpur, pp 296–313

    Google Scholar 

  • Sivritepe N, Sivritepe OH, Çelik H, Katkat AV (2010) Salinity responses of grafted grapevines: effects of scion and rootstock genotypes. Not Bot Hort Agrobot Cluj 38:193–201

    Google Scholar 

  • Staub AM (1963) Extraction, identification et dosages des glucides dans les extraits d’organes et les corps bactériens. In: Masson et Compagnie (ed) Techniques de laboratoire, Tome 1 et 2, Paris, pp 1307–1366

  • Syvertsen JP, Bandaranayake W (2011) Salinity tolerance of Cleopatra mandarin seedlings and two of its Trifoliata hybrids, US-897 and X639. Proc Fla State Hort Soc 124:47–51

    Google Scholar 

  • Tunçturk M, Tunçturk R, Yasar F (2008) Changes in micronutrients, dry weight and plant growth of soybean (Glycine max L. Merrill) cultivars under salt stress. Afr J Biotechnol 7:1650–1654

    Article  Google Scholar 

  • Upreti KK, Murti GSR (2010) Response of grape rootstocks to salinity: changes in root growth, polyamines and abscisic acid. Biol Plant 54:730–734

    Article  CAS  Google Scholar 

  • Urdanoz V, Aragüés R (2009) Three-year field response of drip-irrigated grapevine (Vitis vinifera L., cv. Tempranillo) to soil salinity. Plant Soil 324:219–230

    Article  CAS  Google Scholar 

  • Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390

    Article  CAS  Google Scholar 

  • Wu QS, Zou YN (2009) Adaptive responses of birch-leaved pear (Pyrus betulaefolia) seedlings to salinity stress. Not Bot Horti Agrobot 37:133–138

    Google Scholar 

  • Yingqiang W, Xiping W, Shunyuan X, Yuejin W (2012) Ectopic expression of VpALDH2B4, a novel aldehyde dehydrogenase gene from Chinese wild grapevine (Vitis pseudoreticulata), enhances resistance to mildew pathogens and salt stress in Arabidopsis. Planta 236:525–539

    Article  Google Scholar 

  • Zoghlami N, Mliki A, Ghorbel A (2003) Occurrence and discrimination of spontaneous grapes native to Tunisia by RAPD markers. Acta Hortic 603:157–166

    Article  Google Scholar 

  • Zribi L, Gharbi F, Rezgui F, Rejeb S, Nahdi H, Rejeb MN (2009) Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato Solanum lycopersicum (variety Rio Grande). Sci Hortic 120:367–372

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Zoghlemi Nejia from the biotechnology centre of Borj Cedria for her valuable assistance in selecting the accessions of wild vines studied and sampling them in their natural site.

Author information

Authors and Affiliations

Authors

Contributions

AH designed and carried out the experiment. FG performed fluorescence chlorophyll measurements. AH wrote the manuscript with the support from FG, SR, AM and AG.

Corresponding author

Correspondence to Hend Askri.

Ethics declarations

Declaration

We attest to the fact that all authors listed on the title page have contributed significantly to the work, have read the manuscript, attest to the validity and legitimacy of the data and its interpretation and agree to its submission to Brazilian Journal of Botany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askri, H., Gharbi, F., Rejeb, S. et al. Differential physiological responses of Tunisian wild grapevines (Vitis vinifera L. subsp. sylvestris) to NaCl salt stress. Braz. J. Bot 41, 795–804 (2018). https://doi.org/10.1007/s40415-018-0500-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-018-0500-x

Keywords

Navigation