Savanna turning into forest: concerted vegetation change at the ecotone between the Amazon and “Cerrado” biomes

Abstract

In the “Cerrado”–Amazon ecotone in central Brazil, recent studies suggest some encroachment of forest into savanna, but how, where, and why this might be occurring is unclear. To better understand this phenomenon, we assessed changes in the structure and dynamics of tree species in three vegetation types at the “Cerrado”–Amazon ecotone that are potentially susceptible to encroachment: open “cerrado” (OC), typical “cerrado” (TC) and dense woodland (DW). We estimated changes in density, basal area and aboveground biomass of trees with diameter ≥ 10 cm over four inventories carried out between 2008 and 2015 and classified the species according to their preferred habitat (savanna, generalist, or forest). There was an increase in all structural parameters assessed in all vegetation types, with recruitment and gains in basal area and biomass greater than mortality and losses. Thus, there were net gains between the first and final inventories in density (OC: 3.4–22.9%; TC: 1.8–12.6%; DW: 0.2–8.3%), in basal area (OC: 8.3–18.2%; TC: 2–12.7%; DW: 2.3–8.9%), and in biomass (OC: 10.6–16.4%; TC: 1–12%; DW: 5.2–18.7%). Furthermore, all vegetation types also experienced net gains in forest and generalist species relative to savanna species. A decline in recruitment of savanna species was a likely consequence of vegetation encroachment and environmental changes. Our results indicate, for the first time based on quantitative and standardized multi-site temporal data, that concerted structural changes caused by vegetation encroachment are occurring at the ecotone between the two largest biomes in Brazil.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abreu RC, Hoffmann WA, Vasconcelos HL, Pilon NA, Rossatto DR, Durigan G (2017) The biodiversity cost of carbon sequestration in tropical savanna. Sci Adv 3:e1701284

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ackerly DD, Thomas WW, Cid Ferreira C, Pirani JR (1989) The Forest-Cerrado Transition Zone in Southern Amazonia: results of the 1985 Projeto Flora Amazonica Expedition to Mato Grosso. Brittonia 41:113–128

    Article  Google Scholar 

  3. Baker TR, Pennington RT, Magallon S et al (2014) Fast demographic traits promote high diversification rates of Amazonian trees. Ecol Lett 17:527–536. https://doi.org/10.1111/ele.12252

    Article  PubMed  PubMed Central  Google Scholar 

  4. Baptiste Auguie (2016) gridExtra: miscellaneous functions for “grid” graphics. R package version 2.2.1

  5. Bonini I, Rodrigues C, Dallacort R et al (2014) Rainfall and deforestation in the municipality of Colíder, Southern Amazon. Rev Bras Meteorol 29:483–493. https://doi.org/10.1590/0102-778620130665

    Article  Google Scholar 

  6. Bonini I, Marimon-Junior BH, Matricardi E, Phillips O et al (2018) Collapse of ecosystem carbon stocks due to forest conversion to soybean plantations at the Amazon-Cerrado transition. For Ecol Manag 414:64–73

    Article  Google Scholar 

  7. Brando PM, Balch JK, Nepstad DC et al (2014) Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc Natl Acad Sci USA 111:6347–6352. https://doi.org/10.1073/pnas.1305499111

    Article  PubMed  CAS  Google Scholar 

  8. Brienen RJW, Phillips OL, Feldpausch TR et al (2015) Long-term decline of the Amazon carbon sink. Nature 519:344–348. https://doi.org/10.1038/nature14283

    Article  PubMed  CAS  Google Scholar 

  9. Castanho ADA, Galbraith D, Zhang K et al (2016) Changing Amazon biomass and the role of atmospheric CO2 concentration, climate and land use. Glob Biogeochem Cycles 30:18–39. https://doi.org/10.1002/2015GB005135

    Article  CAS  Google Scholar 

  10. Cole MM (1992) Influence of physical factors on the nature and dynamics of forest-savanna boundaries. In: Ratter JA, Proctor J, Furley PA (eds) Nature and dynamics of forest-savanna boundaries1, 1o edn. Chapman & Hall, London, pp 63–76

    Google Scholar 

  11. Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144. https://doi.org/10.1086/283241

    Article  Google Scholar 

  12. Costa ACL, Galbraith D, Portela BTT et al (2010) Effect of seven years of experimental drought on the aboveground biomass storage of an eastern Amazonian rainforest. New Phytol 12:579–591. https://doi.org/10.1111/j.1469-8137.2010.03309.x

    Article  Google Scholar 

  13. Durigan G, Ratter JA (2006) Successional changes in cerrado and cerrado/forest ecotonal vegetation in western São Paulo State, Brazil, 1962–2000. Edinb J Bot 63:119. https://doi.org/10.1017/S0960428606000357

    Article  Google Scholar 

  14. Durigan G, Ratter JA (2016) The need for a consistent fire policy for Cerrado conservation. J Appl Ecol 53:11–15. https://doi.org/10.1111/1365-2664.12559

    Article  Google Scholar 

  15. Eiten G (1972) The cerrado vegetation of Brazil. Bot Rev 38:201–341

    Article  Google Scholar 

  16. Fearnside PM (2005) Desmatamento na Amazônia brasileira: história, índices e conseqüências. Megadiversidade 1:113–123. https://doi.org/10.1590/S0044-59672006000300018

    Article  Google Scholar 

  17. Feldpausch TR, Phillips OL, Brienen RJW et al (2016) Amazon forest response to repeated droughts. Glob Biogeochem Cycles 30:964–982. https://doi.org/10.1002/2015GB005133

    Article  CAS  Google Scholar 

  18. Geiger EL, Gotsch SG, Damasco G et al (2011) Distinct roles of savanna and forest tree species in regeneration under fire suppression in a Brazilian savanna. J Veg Sci 22:312–321. https://doi.org/10.1111/j.1654-1103.2011.01252.x

    Article  Google Scholar 

  19. Gloor M, Brienen RJW, Galbraith D et al (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett 40:1729–1733. https://doi.org/10.1002/grl.50377

    Article  Google Scholar 

  20. Guimarães JCC, Van Den Berg E, Castro GC et al (2008) Dinâmica do componente arbustivo-arbóreo de uma floresta de galeria aluvial no planalto de Poços de Caldas, MG, Brasil. Rev Bras Bot 31:621–632. https://doi.org/10.1590/S0100-84042008000400008

    Article  Google Scholar 

  21. Haridasan M (2001) Nutrient cycling as a function of landscape and biotic characteristics in the cerrado of central Brazil. In: McClain ME, Victoria RL, Richey JE (eds) Biogeochemistry of the amazon basin and its role in a changing world. Oxford University Press, New York, pp 68–83

    Google Scholar 

  22. Henriques RP (2005) Influência da história, solo e fogo na distribuição e dinâmica das fitofisionomias no bioma do Cerrado. In: Scariot A, Sousa-Silva JC, Felfili JM (eds) Cerrado: ecologia, biodiversidade e conservação. Ministério do Meio Ambiente, Brasilia, DF, pp 73–92

    Google Scholar 

  23. Henriques RP, Hay JD (2002) Patterns and dynamics of plant populations. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 140–158

    Google Scholar 

  24. Hoffmann WA, Moreira AG (2002) The role of fire in population dynamics of woody plants. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 159–177

    Google Scholar 

  25. Kerbauy GB (2012) Fisiologia vegetal. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  26. Kershaw AP (1992) The development of rainforest-savanna boundaries in tropical Australia. In: Furley PA, Proctor P, Ratter JA (eds) Nature and dynamics of forest-savanna boundaries, 10th edn. Chapman & Hall, London, pp 255–272

    Google Scholar 

  27. Khavhagali P, Bond WJ (2008) Increase of woody plants in savannah ecosystems. Grassroots Newsl Grassl Soc South Africa 8:21–24

    Google Scholar 

  28. Klink CA, Machado RB (2005) A conservação do Cerrado brasileiro. Megadiversidade 1:147–155

    Google Scholar 

  29. Lewis S, Phillips OL, Baker TR et al (2004) Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Philos Trans R Soc Lond Ser B Biol Sci 359:421–436. https://doi.org/10.1098/rstb.2003.1431

    Article  CAS  Google Scholar 

  30. Li Y, Ye W, Wang M, Yan X (2009) Climate change and drought: a risk assessment of crop-yield impacts. Clim Res 39:31–46. https://doi.org/10.3354/cr00797

    Article  CAS  Google Scholar 

  31. Marengo JA, Alves LM, Soares W et al (2013) Two contrasting severe seasonal extremes in Tropical South America in 2012: flood in Amazonia and drought in Northeast Brazil. J Clim 26:9137–9154

    Article  Google Scholar 

  32. Marimon Junior BH, Haridasan M (2005) Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre solo distrófico no leste de Mato Grosso, Brasil. Acta Bot Bras 19:913–926. https://doi.org/10.1590/S0102-33062005000400026

    Article  Google Scholar 

  33. Marimon BS, Lima E, Duarte T et al (2006) Observations on the vegetation of northeastern Mato Grosso, Brazil. IV. An analysis of the Cerrado-Amazonian Forest Ecotone. Edinb J Bot 63:323–341. https://doi.org/10.1017/S0960428606000576

    Article  Google Scholar 

  34. Marimon BS, Felfili JM, Lima ES et al (2010) Environmental determinants for natural regeneration of gallery forest at the Cerrado/Amazonia boundaries in Brazil. Acta Amaz 40:107–118. https://doi.org/10.1590/S0044-59672010000100014

    Article  CAS  Google Scholar 

  35. Marimon BS, Marimon Junior BH, Feldpausch TR et al (2014) Disequilibrium and hyperdynamic tree turnover at the forest–cerrado transition zone in Southern Amazonia. Plant Ecol Divers 7:281–292. https://doi.org/10.1080/17550874.2013.818072

    Article  Google Scholar 

  36. Mayle FE (2000) Millennial-scale dynamics of Southern Amazonian rain forests. Science 290:2291–2294. https://doi.org/10.1126/science.290.5500.2291

    Article  PubMed  CAS  Google Scholar 

  37. Mendonça RC, Felfili JM, Walter BM et al (2008) Flora vascular do Bioma Cerrado: checklist com 12356 espécies. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: ecologia, biodiversidade e conservação, 2a. Embrapa Informação Tecnológica, Brasilia, DF, pp 417–1279

    Google Scholar 

  38. Mews HA, Marimon BS, Maracahipes L et al (2011) Dinâmica da comunidade lenhosa de um Cerrado Típico na região Nordeste do Estado de Mato Grosso, Brasil. Biota Neotrop 11:73–82

    Article  Google Scholar 

  39. Miranda HS, Bustamante MM, Miranda AC (2002) The Fire Factor. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 51–68

    Google Scholar 

  40. Miranda SC, Bustamante M, Palace M, Hagen S, Keller M, Ferreira LG (2014) Regional variations in biomass distribution in Brazilian Savanna Woodland. Biotropica 46:125–138. https://doi.org/10.1111/btp.12095

    Article  Google Scholar 

  41. Morandi PS, Marimon-Junior BH, Oliveira EA et al (2015) Vegetation succession in the Cerrado-Amazonia forest transition zone of Mato Grosso State, Brazil. Edinb J Bot 73:1–11. https://doi.org/10.1017/S096042861500027X

    Article  Google Scholar 

  42. Moreira AG (2000) Effects of fire protection on savanna structure in Central Brazil. J Biogeogr 27:1021–1029

    Article  Google Scholar 

  43. Nogueira EM, Nelson BW, Fearnside PM et al (2008) Tree height in Brazil’s “arc of deforestation”: shorter trees in south and southwest Amazonia imply lower biomass. For Ecol Manag 255:2963–2972. https://doi.org/10.1016/j.foreco.2008.02.002

    Article  Google Scholar 

  44. Oksanen J, Blanchet FG, Friendly M et al (2016) vegan: community ecology package. R package version 2.4-0

  45. Oliveira B, Marimon Junior BH, Mews HA et al (2016) Unraveling the ecosystem functions in the Amazonia-Cerrado transition: evidence of hyperdynamic nutrient cycling. Plant Ecol 218:225–239. https://doi.org/10.1007/s11258-016-0681-y

    Article  Google Scholar 

  46. Oliveira-Filho AT, Ratter JA (1995) A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinb J Bot 52:141. https://doi.org/10.1017/S0960428600000949

    Article  Google Scholar 

  47. Passos FB, Lopes CM, Aquino FG, Ribeiro JF (2014) Nurse plant effect of Solanum lycocarpum A. St.-Hil. in area of Brazilian Savanna undergoing a process of restoration. Braz J Bot 37:251–259. https://doi.org/10.1007/s40415-014-0079-9

    Article  Google Scholar 

  48. Pellegrini AFA, Socolar JB, Elsen PR, Giam X (2016) Trade-offs between savanna woody plant diversity and carbon storage in the Brazilian Cerrado. Glob Chang Biol 22:3373–3382. https://doi.org/10.1111/gcb.13259

    Article  PubMed  Google Scholar 

  49. Peltzer DA, Wardle DA, Allison VJ et al (2010) Understanding ecosystem retrogression. Ecol Monogr 80:509–529. https://doi.org/10.1890/09-1552.1

    Article  Google Scholar 

  50. Phillips OL, Gentry AH (1994) Increasing turnover through time in tropical forests. Science 263:954–958. https://doi.org/10.1126/science.263.5149.954

    Article  PubMed  CAS  Google Scholar 

  51. Phillips OL, Malhi Y, Higuchi N et al (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442

    Article  PubMed  CAS  Google Scholar 

  52. Phillips OL, Higuchi N, Vieira S et al (2009) Changes in Amazonian forest biomass, dynamics and composition, 1980–2002. In: Bustamante MKM, Gash J, Dias PS (eds) Amazonia and global change. American Geophysical Union, Washington, D. C., pp 373–387

    Google Scholar 

  53. Phillips OL, Baker TR, Brienen R, Feldpausch TR (2010) Field manual for plot establishment and remeasurement. http://www.geog.leeds.ac.uk/projects/rainfor

  54. Ratajczak Z, Nippert JB, Collins SL (2012) Woody encroachment decreases diversity across North American grasslands and savannas. Ecology 93:697–703

    Article  PubMed  Google Scholar 

  55. Ratter JA (1992) Transitions between cerrado and forest vegetation in Brazil. In: Furley PA, Procter J, Ratter JA (eds) Nature and dynamics of forest-savanna boundaries, 1a. Chapman & Hall, London, pp 417–429

    Google Scholar 

  56. Ratter JA, Richards PW, Argent G, Gifford DR (1973) Observations on the vegetation of Northeastern Mato Grosso: I. The woody vegetation types of the Xavantina-Cachimbo expedition area. Philos Trans R Soc B Biol Sci 266:449–492. https://doi.org/10.1098/rstb.1973.0053

    Article  Google Scholar 

  57. Ribeiro JF, Walter BM (2008) As principais fitofisionomias do Bioma Cerrado. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: Ecologia e Flora. Embrapa Informação Tecnológica, Brasilia - DF, pp 151–212

  58. R Core Team (2016) R: a language and environment for statistical computing, reference index version 1.0.136. R Foundation for statistical computing, Vienna, Austria

  59. Scolforo JRS, Rufini AL, Mello JM et al (2008) Equações para o peso de matéria seca das fisionomias, em Minas Gerais. In: Scolforo JR, Oliveira AD, Acerbi Júnior FW (eds) Inventário Florestal de Minas Gerais - Equações de Volume, Peso de Matéria Seca e Carbono para Diferentes Fisionomias da Flora Nativa2. UFLA, Lavras, pp 103–114

  60. Sheil D, Burslem DFRP, Alder D (1995) The interpretation and misinterpretation of mortality rate measures. J Ecol 83:331–333

    Article  Google Scholar 

  61. Sheil D, Jennings S, Savill P (2000) Long-term permanent plot observations of vegetation dynamics in Budongo, a Ugandan Rain Forest. J Trop Ecol 16:765–800

    Article  Google Scholar 

  62. Silva LCR, Hoffmann WA, Rossatto DR et al (2013) Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant Soil 373:829–842. https://doi.org/10.1007/s11104-013-1822-x

    Article  CAS  Google Scholar 

  63. Veenendaal EM, Torello-Raventos M, Feldpausch TR et al (2015) Structural, physiognomic and above-ground biomass variation in savanna-forest transition zones on three continents—how different are co-occurring savanna and forest formations? Biogeosciences 12:2927–2951

    Article  Google Scholar 

  64. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Google Scholar 

  65. Vidotto E, Pessenda LCR, Ribeiro ADS et al (2007) Dinâmica do ecótono floresta-campo no sul do estado do Amazonas no Holoceno, através de estudos isotópicos e fitossociológicos. Acta Amaz 37:385–400

    Article  Google Scholar 

  66. Whittaker RH (1953) A Consideration of climax theory: the climax as a population and pattern. Ecol Monogr 23:41–78. https://doi.org/10.2307/1943519

    Article  Google Scholar 

  67. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Google Scholar 

  68. Yarranton G, Morrison R (1974) Spatial dynamics of a primary succession: nucleation. J Ecol 62:417–428. https://doi.org/10.2307/2258988

    Article  Google Scholar 

  69. Zar JH (2010) Biostatistical analysis, 5o edn. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

Download references

Acknowledgements

The Coordination for the Improvement of Higher Education Personnel (CAPES) and Foundation for Sponsor Research in Mato Grosso (FAPEMAT) granted FB Passos, PS Morandi, SM Reis, EC Neves and F Elias scholarships. The Brazilian National Council for Scientific and Technological Development (CNPq) funded the PELD Project: “Cerrado”–Amazon Forest transition: ecological and socio-environmental basis for conservation (phases I and II—Processes 558069/2009-6 and 403,725/2012-7). The team of the Laboratory of Plant Ecology (LABEV) of the University of the State of Mato Grosso helped with data collection in the field. The owners of Fazenda Santa Marta and Fazenda Nossa Senhora da Guia, in Ribeirão Cascalheira, state of Mato Grosso granted permission to access the study area. OLP is supported by an ERC Advanced Grant (T-Forces) and is a Royal Society-Wolfson Research Merit Award holder. TRF is supported by a NERC Grant (NE/N011570/1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Beatriz Schwantes Marimon.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Passos, F.B., Marimon, B.S., Phillips, O.L. et al. Savanna turning into forest: concerted vegetation change at the ecotone between the Amazon and “Cerrado” biomes. Braz. J. Bot 41, 611–619 (2018). https://doi.org/10.1007/s40415-018-0470-z

Download citation

Keywords

  • Encroachment
  • Environmental group
  • Keystone species
  • Structure
  • Vegetation dynamics