Abstract
In the “Cerrado”–Amazon ecotone in central Brazil, recent studies suggest some encroachment of forest into savanna, but how, where, and why this might be occurring is unclear. To better understand this phenomenon, we assessed changes in the structure and dynamics of tree species in three vegetation types at the “Cerrado”–Amazon ecotone that are potentially susceptible to encroachment: open “cerrado” (OC), typical “cerrado” (TC) and dense woodland (DW). We estimated changes in density, basal area and aboveground biomass of trees with diameter ≥ 10 cm over four inventories carried out between 2008 and 2015 and classified the species according to their preferred habitat (savanna, generalist, or forest). There was an increase in all structural parameters assessed in all vegetation types, with recruitment and gains in basal area and biomass greater than mortality and losses. Thus, there were net gains between the first and final inventories in density (OC: 3.4–22.9%; TC: 1.8–12.6%; DW: 0.2–8.3%), in basal area (OC: 8.3–18.2%; TC: 2–12.7%; DW: 2.3–8.9%), and in biomass (OC: 10.6–16.4%; TC: 1–12%; DW: 5.2–18.7%). Furthermore, all vegetation types also experienced net gains in forest and generalist species relative to savanna species. A decline in recruitment of savanna species was a likely consequence of vegetation encroachment and environmental changes. Our results indicate, for the first time based on quantitative and standardized multi-site temporal data, that concerted structural changes caused by vegetation encroachment are occurring at the ecotone between the two largest biomes in Brazil.
Similar content being viewed by others
References
Abreu RC, Hoffmann WA, Vasconcelos HL, Pilon NA, Rossatto DR, Durigan G (2017) The biodiversity cost of carbon sequestration in tropical savanna. Sci Adv 3:e1701284
Ackerly DD, Thomas WW, Cid Ferreira C, Pirani JR (1989) The Forest-Cerrado Transition Zone in Southern Amazonia: results of the 1985 Projeto Flora Amazonica Expedition to Mato Grosso. Brittonia 41:113–128
Baker TR, Pennington RT, Magallon S et al (2014) Fast demographic traits promote high diversification rates of Amazonian trees. Ecol Lett 17:527–536. https://doi.org/10.1111/ele.12252
Baptiste Auguie (2016) gridExtra: miscellaneous functions for “grid” graphics. R package version 2.2.1
Bonini I, Rodrigues C, Dallacort R et al (2014) Rainfall and deforestation in the municipality of Colíder, Southern Amazon. Rev Bras Meteorol 29:483–493. https://doi.org/10.1590/0102-778620130665
Bonini I, Marimon-Junior BH, Matricardi E, Phillips O et al (2018) Collapse of ecosystem carbon stocks due to forest conversion to soybean plantations at the Amazon-Cerrado transition. For Ecol Manag 414:64–73
Brando PM, Balch JK, Nepstad DC et al (2014) Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc Natl Acad Sci USA 111:6347–6352. https://doi.org/10.1073/pnas.1305499111
Brienen RJW, Phillips OL, Feldpausch TR et al (2015) Long-term decline of the Amazon carbon sink. Nature 519:344–348. https://doi.org/10.1038/nature14283
Castanho ADA, Galbraith D, Zhang K et al (2016) Changing Amazon biomass and the role of atmospheric CO2 concentration, climate and land use. Glob Biogeochem Cycles 30:18–39. https://doi.org/10.1002/2015GB005135
Cole MM (1992) Influence of physical factors on the nature and dynamics of forest-savanna boundaries. In: Ratter JA, Proctor J, Furley PA (eds) Nature and dynamics of forest-savanna boundaries1, 1o edn. Chapman & Hall, London, pp 63–76
Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144. https://doi.org/10.1086/283241
Costa ACL, Galbraith D, Portela BTT et al (2010) Effect of seven years of experimental drought on the aboveground biomass storage of an eastern Amazonian rainforest. New Phytol 12:579–591. https://doi.org/10.1111/j.1469-8137.2010.03309.x
Durigan G, Ratter JA (2006) Successional changes in cerrado and cerrado/forest ecotonal vegetation in western São Paulo State, Brazil, 1962–2000. Edinb J Bot 63:119. https://doi.org/10.1017/S0960428606000357
Durigan G, Ratter JA (2016) The need for a consistent fire policy for Cerrado conservation. J Appl Ecol 53:11–15. https://doi.org/10.1111/1365-2664.12559
Eiten G (1972) The cerrado vegetation of Brazil. Bot Rev 38:201–341
Fearnside PM (2005) Desmatamento na Amazônia brasileira: história, índices e conseqüências. Megadiversidade 1:113–123. https://doi.org/10.1590/S0044-59672006000300018
Feldpausch TR, Phillips OL, Brienen RJW et al (2016) Amazon forest response to repeated droughts. Glob Biogeochem Cycles 30:964–982. https://doi.org/10.1002/2015GB005133
Geiger EL, Gotsch SG, Damasco G et al (2011) Distinct roles of savanna and forest tree species in regeneration under fire suppression in a Brazilian savanna. J Veg Sci 22:312–321. https://doi.org/10.1111/j.1654-1103.2011.01252.x
Gloor M, Brienen RJW, Galbraith D et al (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett 40:1729–1733. https://doi.org/10.1002/grl.50377
Guimarães JCC, Van Den Berg E, Castro GC et al (2008) Dinâmica do componente arbustivo-arbóreo de uma floresta de galeria aluvial no planalto de Poços de Caldas, MG, Brasil. Rev Bras Bot 31:621–632. https://doi.org/10.1590/S0100-84042008000400008
Haridasan M (2001) Nutrient cycling as a function of landscape and biotic characteristics in the cerrado of central Brazil. In: McClain ME, Victoria RL, Richey JE (eds) Biogeochemistry of the amazon basin and its role in a changing world. Oxford University Press, New York, pp 68–83
Henriques RP (2005) Influência da história, solo e fogo na distribuição e dinâmica das fitofisionomias no bioma do Cerrado. In: Scariot A, Sousa-Silva JC, Felfili JM (eds) Cerrado: ecologia, biodiversidade e conservação. Ministério do Meio Ambiente, Brasilia, DF, pp 73–92
Henriques RP, Hay JD (2002) Patterns and dynamics of plant populations. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 140–158
Hoffmann WA, Moreira AG (2002) The role of fire in population dynamics of woody plants. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 159–177
Kerbauy GB (2012) Fisiologia vegetal. Guanabara Koogan, Rio de Janeiro
Kershaw AP (1992) The development of rainforest-savanna boundaries in tropical Australia. In: Furley PA, Proctor P, Ratter JA (eds) Nature and dynamics of forest-savanna boundaries, 10th edn. Chapman & Hall, London, pp 255–272
Khavhagali P, Bond WJ (2008) Increase of woody plants in savannah ecosystems. Grassroots Newsl Grassl Soc South Africa 8:21–24
Klink CA, Machado RB (2005) A conservação do Cerrado brasileiro. Megadiversidade 1:147–155
Lewis S, Phillips OL, Baker TR et al (2004) Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Philos Trans R Soc Lond Ser B Biol Sci 359:421–436. https://doi.org/10.1098/rstb.2003.1431
Li Y, Ye W, Wang M, Yan X (2009) Climate change and drought: a risk assessment of crop-yield impacts. Clim Res 39:31–46. https://doi.org/10.3354/cr00797
Marengo JA, Alves LM, Soares W et al (2013) Two contrasting severe seasonal extremes in Tropical South America in 2012: flood in Amazonia and drought in Northeast Brazil. J Clim 26:9137–9154
Marimon Junior BH, Haridasan M (2005) Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre solo distrófico no leste de Mato Grosso, Brasil. Acta Bot Bras 19:913–926. https://doi.org/10.1590/S0102-33062005000400026
Marimon BS, Lima E, Duarte T et al (2006) Observations on the vegetation of northeastern Mato Grosso, Brazil. IV. An analysis of the Cerrado-Amazonian Forest Ecotone. Edinb J Bot 63:323–341. https://doi.org/10.1017/S0960428606000576
Marimon BS, Felfili JM, Lima ES et al (2010) Environmental determinants for natural regeneration of gallery forest at the Cerrado/Amazonia boundaries in Brazil. Acta Amaz 40:107–118. https://doi.org/10.1590/S0044-59672010000100014
Marimon BS, Marimon Junior BH, Feldpausch TR et al (2014) Disequilibrium and hyperdynamic tree turnover at the forest–cerrado transition zone in Southern Amazonia. Plant Ecol Divers 7:281–292. https://doi.org/10.1080/17550874.2013.818072
Mayle FE (2000) Millennial-scale dynamics of Southern Amazonian rain forests. Science 290:2291–2294. https://doi.org/10.1126/science.290.5500.2291
Mendonça RC, Felfili JM, Walter BM et al (2008) Flora vascular do Bioma Cerrado: checklist com 12356 espécies. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: ecologia, biodiversidade e conservação, 2a. Embrapa Informação Tecnológica, Brasilia, DF, pp 417–1279
Mews HA, Marimon BS, Maracahipes L et al (2011) Dinâmica da comunidade lenhosa de um Cerrado Típico na região Nordeste do Estado de Mato Grosso, Brasil. Biota Neotrop 11:73–82
Miranda HS, Bustamante MM, Miranda AC (2002) The Fire Factor. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 51–68
Miranda SC, Bustamante M, Palace M, Hagen S, Keller M, Ferreira LG (2014) Regional variations in biomass distribution in Brazilian Savanna Woodland. Biotropica 46:125–138. https://doi.org/10.1111/btp.12095
Morandi PS, Marimon-Junior BH, Oliveira EA et al (2015) Vegetation succession in the Cerrado-Amazonia forest transition zone of Mato Grosso State, Brazil. Edinb J Bot 73:1–11. https://doi.org/10.1017/S096042861500027X
Moreira AG (2000) Effects of fire protection on savanna structure in Central Brazil. J Biogeogr 27:1021–1029
Nogueira EM, Nelson BW, Fearnside PM et al (2008) Tree height in Brazil’s “arc of deforestation”: shorter trees in south and southwest Amazonia imply lower biomass. For Ecol Manag 255:2963–2972. https://doi.org/10.1016/j.foreco.2008.02.002
Oksanen J, Blanchet FG, Friendly M et al (2016) vegan: community ecology package. R package version 2.4-0
Oliveira B, Marimon Junior BH, Mews HA et al (2016) Unraveling the ecosystem functions in the Amazonia-Cerrado transition: evidence of hyperdynamic nutrient cycling. Plant Ecol 218:225–239. https://doi.org/10.1007/s11258-016-0681-y
Oliveira-Filho AT, Ratter JA (1995) A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinb J Bot 52:141. https://doi.org/10.1017/S0960428600000949
Passos FB, Lopes CM, Aquino FG, Ribeiro JF (2014) Nurse plant effect of Solanum lycocarpum A. St.-Hil. in area of Brazilian Savanna undergoing a process of restoration. Braz J Bot 37:251–259. https://doi.org/10.1007/s40415-014-0079-9
Pellegrini AFA, Socolar JB, Elsen PR, Giam X (2016) Trade-offs between savanna woody plant diversity and carbon storage in the Brazilian Cerrado. Glob Chang Biol 22:3373–3382. https://doi.org/10.1111/gcb.13259
Peltzer DA, Wardle DA, Allison VJ et al (2010) Understanding ecosystem retrogression. Ecol Monogr 80:509–529. https://doi.org/10.1890/09-1552.1
Phillips OL, Gentry AH (1994) Increasing turnover through time in tropical forests. Science 263:954–958. https://doi.org/10.1126/science.263.5149.954
Phillips OL, Malhi Y, Higuchi N et al (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442
Phillips OL, Higuchi N, Vieira S et al (2009) Changes in Amazonian forest biomass, dynamics and composition, 1980–2002. In: Bustamante MKM, Gash J, Dias PS (eds) Amazonia and global change. American Geophysical Union, Washington, D. C., pp 373–387
Phillips OL, Baker TR, Brienen R, Feldpausch TR (2010) Field manual for plot establishment and remeasurement. http://www.geog.leeds.ac.uk/projects/rainfor
Ratajczak Z, Nippert JB, Collins SL (2012) Woody encroachment decreases diversity across North American grasslands and savannas. Ecology 93:697–703
Ratter JA (1992) Transitions between cerrado and forest vegetation in Brazil. In: Furley PA, Procter J, Ratter JA (eds) Nature and dynamics of forest-savanna boundaries, 1a. Chapman & Hall, London, pp 417–429
Ratter JA, Richards PW, Argent G, Gifford DR (1973) Observations on the vegetation of Northeastern Mato Grosso: I. The woody vegetation types of the Xavantina-Cachimbo expedition area. Philos Trans R Soc B Biol Sci 266:449–492. https://doi.org/10.1098/rstb.1973.0053
Ribeiro JF, Walter BM (2008) As principais fitofisionomias do Bioma Cerrado. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: Ecologia e Flora. Embrapa Informação Tecnológica, Brasilia - DF, pp 151–212
R Core Team (2016) R: a language and environment for statistical computing, reference index version 1.0.136. R Foundation for statistical computing, Vienna, Austria
Scolforo JRS, Rufini AL, Mello JM et al (2008) Equações para o peso de matéria seca das fisionomias, em Minas Gerais. In: Scolforo JR, Oliveira AD, Acerbi Júnior FW (eds) Inventário Florestal de Minas Gerais - Equações de Volume, Peso de Matéria Seca e Carbono para Diferentes Fisionomias da Flora Nativa2. UFLA, Lavras, pp 103–114
Sheil D, Burslem DFRP, Alder D (1995) The interpretation and misinterpretation of mortality rate measures. J Ecol 83:331–333
Sheil D, Jennings S, Savill P (2000) Long-term permanent plot observations of vegetation dynamics in Budongo, a Ugandan Rain Forest. J Trop Ecol 16:765–800
Silva LCR, Hoffmann WA, Rossatto DR et al (2013) Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant Soil 373:829–842. https://doi.org/10.1007/s11104-013-1822-x
Veenendaal EM, Torello-Raventos M, Feldpausch TR et al (2015) Structural, physiognomic and above-ground biomass variation in savanna-forest transition zones on three continents—how different are co-occurring savanna and forest formations? Biogeosciences 12:2927–2951
Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York
Vidotto E, Pessenda LCR, Ribeiro ADS et al (2007) Dinâmica do ecótono floresta-campo no sul do estado do Amazonas no Holoceno, através de estudos isotópicos e fitossociológicos. Acta Amaz 37:385–400
Whittaker RH (1953) A Consideration of climax theory: the climax as a population and pattern. Ecol Monogr 23:41–78. https://doi.org/10.2307/1943519
Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York
Yarranton G, Morrison R (1974) Spatial dynamics of a primary succession: nucleation. J Ecol 62:417–428. https://doi.org/10.2307/2258988
Zar JH (2010) Biostatistical analysis, 5o edn. Prentice-Hall, Englewood Cliffs, NJ
Acknowledgements
The Coordination for the Improvement of Higher Education Personnel (CAPES) and Foundation for Sponsor Research in Mato Grosso (FAPEMAT) granted FB Passos, PS Morandi, SM Reis, EC Neves and F Elias scholarships. The Brazilian National Council for Scientific and Technological Development (CNPq) funded the PELD Project: “Cerrado”–Amazon Forest transition: ecological and socio-environmental basis for conservation (phases I and II—Processes 558069/2009-6 and 403,725/2012-7). The team of the Laboratory of Plant Ecology (LABEV) of the University of the State of Mato Grosso helped with data collection in the field. The owners of Fazenda Santa Marta and Fazenda Nossa Senhora da Guia, in Ribeirão Cascalheira, state of Mato Grosso granted permission to access the study area. OLP is supported by an ERC Advanced Grant (T-Forces) and is a Royal Society-Wolfson Research Merit Award holder. TRF is supported by a NERC Grant (NE/N011570/1).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Passos, F.B., Marimon, B.S., Phillips, O.L. et al. Savanna turning into forest: concerted vegetation change at the ecotone between the Amazon and “Cerrado” biomes. Braz. J. Bot 41, 611–619 (2018). https://doi.org/10.1007/s40415-018-0470-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40415-018-0470-z