Brazilian Journal of Botany

, Volume 41, Issue 3, pp 611–619 | Cite as

Savanna turning into forest: concerted vegetation change at the ecotone between the Amazon and “Cerrado” biomes

  • Fábio Barbosa Passos
  • Beatriz Schwantes MarimonEmail author
  • Oliver L. Phillips
  • Paulo Sérgio Morandi
  • Eder Carvalho das Neves
  • Fernando Elias
  • Simone Matias Reis
  • Bianca de Oliveira
  • Ted R. Feldpausch
  • Ben Hur Marimon Júnior
Original Article


In the “Cerrado”–Amazon ecotone in central Brazil, recent studies suggest some encroachment of forest into savanna, but how, where, and why this might be occurring is unclear. To better understand this phenomenon, we assessed changes in the structure and dynamics of tree species in three vegetation types at the “Cerrado”–Amazon ecotone that are potentially susceptible to encroachment: open “cerrado” (OC), typical “cerrado” (TC) and dense woodland (DW). We estimated changes in density, basal area and aboveground biomass of trees with diameter ≥ 10 cm over four inventories carried out between 2008 and 2015 and classified the species according to their preferred habitat (savanna, generalist, or forest). There was an increase in all structural parameters assessed in all vegetation types, with recruitment and gains in basal area and biomass greater than mortality and losses. Thus, there were net gains between the first and final inventories in density (OC: 3.4–22.9%; TC: 1.8–12.6%; DW: 0.2–8.3%), in basal area (OC: 8.3–18.2%; TC: 2–12.7%; DW: 2.3–8.9%), and in biomass (OC: 10.6–16.4%; TC: 1–12%; DW: 5.2–18.7%). Furthermore, all vegetation types also experienced net gains in forest and generalist species relative to savanna species. A decline in recruitment of savanna species was a likely consequence of vegetation encroachment and environmental changes. Our results indicate, for the first time based on quantitative and standardized multi-site temporal data, that concerted structural changes caused by vegetation encroachment are occurring at the ecotone between the two largest biomes in Brazil.


Encroachment Environmental group Keystone species Structure Vegetation dynamics 



The Coordination for the Improvement of Higher Education Personnel (CAPES) and Foundation for Sponsor Research in Mato Grosso (FAPEMAT) granted FB Passos, PS Morandi, SM Reis, EC Neves and F Elias scholarships. The Brazilian National Council for Scientific and Technological Development (CNPq) funded the PELD Project: “Cerrado”–Amazon Forest transition: ecological and socio-environmental basis for conservation (phases I and II—Processes 558069/2009-6 and 403,725/2012-7). The team of the Laboratory of Plant Ecology (LABEV) of the University of the State of Mato Grosso helped with data collection in the field. The owners of Fazenda Santa Marta and Fazenda Nossa Senhora da Guia, in Ribeirão Cascalheira, state of Mato Grosso granted permission to access the study area. OLP is supported by an ERC Advanced Grant (T-Forces) and is a Royal Society-Wolfson Research Merit Award holder. TRF is supported by a NERC Grant (NE/N011570/1).

Supplementary material

40415_2018_470_MOESM1_ESM.pdf (271 kb)
Supplementary material 1 (PDF 270 kb)
40415_2018_470_MOESM2_ESM.pdf (299 kb)
Supplementary material 2 (PDF 298 kb)
40415_2018_470_MOESM3_ESM.pdf (425 kb)
Supplementary material 3 (PDF 425 kb)
40415_2018_470_MOESM4_ESM.pdf (434 kb)
Supplementary material 4 (PDF 433 kb)
40415_2018_470_MOESM5_ESM.pdf (563 kb)
Supplementary material 5 (PDF 562 kb)
40415_2018_470_MOESM6_ESM.pdf (391 kb)
Supplementary material 6 (PDF 390 kb)


  1. Abreu RC, Hoffmann WA, Vasconcelos HL, Pilon NA, Rossatto DR, Durigan G (2017) The biodiversity cost of carbon sequestration in tropical savanna. Sci Adv 3:e1701284CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ackerly DD, Thomas WW, Cid Ferreira C, Pirani JR (1989) The Forest-Cerrado Transition Zone in Southern Amazonia: results of the 1985 Projeto Flora Amazonica Expedition to Mato Grosso. Brittonia 41:113–128CrossRefGoogle Scholar
  3. Baker TR, Pennington RT, Magallon S et al (2014) Fast demographic traits promote high diversification rates of Amazonian trees. Ecol Lett 17:527–536. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baptiste Auguie (2016) gridExtra: miscellaneous functions for “grid” graphics. R package version 2.2.1Google Scholar
  5. Bonini I, Rodrigues C, Dallacort R et al (2014) Rainfall and deforestation in the municipality of Colíder, Southern Amazon. Rev Bras Meteorol 29:483–493. CrossRefGoogle Scholar
  6. Bonini I, Marimon-Junior BH, Matricardi E, Phillips O et al (2018) Collapse of ecosystem carbon stocks due to forest conversion to soybean plantations at the Amazon-Cerrado transition. For Ecol Manag 414:64–73CrossRefGoogle Scholar
  7. Brando PM, Balch JK, Nepstad DC et al (2014) Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc Natl Acad Sci USA 111:6347–6352. CrossRefPubMedGoogle Scholar
  8. Brienen RJW, Phillips OL, Feldpausch TR et al (2015) Long-term decline of the Amazon carbon sink. Nature 519:344–348. CrossRefPubMedGoogle Scholar
  9. Castanho ADA, Galbraith D, Zhang K et al (2016) Changing Amazon biomass and the role of atmospheric CO2 concentration, climate and land use. Glob Biogeochem Cycles 30:18–39. CrossRefGoogle Scholar
  10. Cole MM (1992) Influence of physical factors on the nature and dynamics of forest-savanna boundaries. In: Ratter JA, Proctor J, Furley PA (eds) Nature and dynamics of forest-savanna boundaries1, 1o edn. Chapman & Hall, London, pp 63–76Google Scholar
  11. Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144. CrossRefGoogle Scholar
  12. Costa ACL, Galbraith D, Portela BTT et al (2010) Effect of seven years of experimental drought on the aboveground biomass storage of an eastern Amazonian rainforest. New Phytol 12:579–591. CrossRefGoogle Scholar
  13. Durigan G, Ratter JA (2006) Successional changes in cerrado and cerrado/forest ecotonal vegetation in western São Paulo State, Brazil, 1962–2000. Edinb J Bot 63:119. CrossRefGoogle Scholar
  14. Durigan G, Ratter JA (2016) The need for a consistent fire policy for Cerrado conservation. J Appl Ecol 53:11–15. CrossRefGoogle Scholar
  15. Eiten G (1972) The cerrado vegetation of Brazil. Bot Rev 38:201–341CrossRefGoogle Scholar
  16. Fearnside PM (2005) Desmatamento na Amazônia brasileira: história, índices e conseqüências. Megadiversidade 1:113–123. CrossRefGoogle Scholar
  17. Feldpausch TR, Phillips OL, Brienen RJW et al (2016) Amazon forest response to repeated droughts. Glob Biogeochem Cycles 30:964–982. CrossRefGoogle Scholar
  18. Geiger EL, Gotsch SG, Damasco G et al (2011) Distinct roles of savanna and forest tree species in regeneration under fire suppression in a Brazilian savanna. J Veg Sci 22:312–321. CrossRefGoogle Scholar
  19. Gloor M, Brienen RJW, Galbraith D et al (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett 40:1729–1733. CrossRefGoogle Scholar
  20. Guimarães JCC, Van Den Berg E, Castro GC et al (2008) Dinâmica do componente arbustivo-arbóreo de uma floresta de galeria aluvial no planalto de Poços de Caldas, MG, Brasil. Rev Bras Bot 31:621–632. CrossRefGoogle Scholar
  21. Haridasan M (2001) Nutrient cycling as a function of landscape and biotic characteristics in the cerrado of central Brazil. In: McClain ME, Victoria RL, Richey JE (eds) Biogeochemistry of the amazon basin and its role in a changing world. Oxford University Press, New York, pp 68–83Google Scholar
  22. Henriques RP (2005) Influência da história, solo e fogo na distribuição e dinâmica das fitofisionomias no bioma do Cerrado. In: Scariot A, Sousa-Silva JC, Felfili JM (eds) Cerrado: ecologia, biodiversidade e conservação. Ministério do Meio Ambiente, Brasilia, DF, pp 73–92Google Scholar
  23. Henriques RP, Hay JD (2002) Patterns and dynamics of plant populations. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 140–158Google Scholar
  24. Hoffmann WA, Moreira AG (2002) The role of fire in population dynamics of woody plants. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 159–177Google Scholar
  25. Kerbauy GB (2012) Fisiologia vegetal. Guanabara Koogan, Rio de JaneiroGoogle Scholar
  26. Kershaw AP (1992) The development of rainforest-savanna boundaries in tropical Australia. In: Furley PA, Proctor P, Ratter JA (eds) Nature and dynamics of forest-savanna boundaries, 10th edn. Chapman & Hall, London, pp 255–272Google Scholar
  27. Khavhagali P, Bond WJ (2008) Increase of woody plants in savannah ecosystems. Grassroots Newsl Grassl Soc South Africa 8:21–24Google Scholar
  28. Klink CA, Machado RB (2005) A conservação do Cerrado brasileiro. Megadiversidade 1:147–155Google Scholar
  29. Lewis S, Phillips OL, Baker TR et al (2004) Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Philos Trans R Soc Lond Ser B Biol Sci 359:421–436. CrossRefGoogle Scholar
  30. Li Y, Ye W, Wang M, Yan X (2009) Climate change and drought: a risk assessment of crop-yield impacts. Clim Res 39:31–46. CrossRefGoogle Scholar
  31. Marengo JA, Alves LM, Soares W et al (2013) Two contrasting severe seasonal extremes in Tropical South America in 2012: flood in Amazonia and drought in Northeast Brazil. J Clim 26:9137–9154CrossRefGoogle Scholar
  32. Marimon Junior BH, Haridasan M (2005) Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre solo distrófico no leste de Mato Grosso, Brasil. Acta Bot Bras 19:913–926. CrossRefGoogle Scholar
  33. Marimon BS, Lima E, Duarte T et al (2006) Observations on the vegetation of northeastern Mato Grosso, Brazil. IV. An analysis of the Cerrado-Amazonian Forest Ecotone. Edinb J Bot 63:323–341. CrossRefGoogle Scholar
  34. Marimon BS, Felfili JM, Lima ES et al (2010) Environmental determinants for natural regeneration of gallery forest at the Cerrado/Amazonia boundaries in Brazil. Acta Amaz 40:107–118. CrossRefGoogle Scholar
  35. Marimon BS, Marimon Junior BH, Feldpausch TR et al (2014) Disequilibrium and hyperdynamic tree turnover at the forest–cerrado transition zone in Southern Amazonia. Plant Ecol Divers 7:281–292. CrossRefGoogle Scholar
  36. Mayle FE (2000) Millennial-scale dynamics of Southern Amazonian rain forests. Science 290:2291–2294. CrossRefPubMedGoogle Scholar
  37. Mendonça RC, Felfili JM, Walter BM et al (2008) Flora vascular do Bioma Cerrado: checklist com 12356 espécies. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: ecologia, biodiversidade e conservação, 2a. Embrapa Informação Tecnológica, Brasilia, DF, pp 417–1279Google Scholar
  38. Mews HA, Marimon BS, Maracahipes L et al (2011) Dinâmica da comunidade lenhosa de um Cerrado Típico na região Nordeste do Estado de Mato Grosso, Brasil. Biota Neotrop 11:73–82CrossRefGoogle Scholar
  39. Miranda HS, Bustamante MM, Miranda AC (2002) The Fire Factor. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 51–68Google Scholar
  40. Miranda SC, Bustamante M, Palace M, Hagen S, Keller M, Ferreira LG (2014) Regional variations in biomass distribution in Brazilian Savanna Woodland. Biotropica 46:125–138. CrossRefGoogle Scholar
  41. Morandi PS, Marimon-Junior BH, Oliveira EA et al (2015) Vegetation succession in the Cerrado-Amazonia forest transition zone of Mato Grosso State, Brazil. Edinb J Bot 73:1–11. CrossRefGoogle Scholar
  42. Moreira AG (2000) Effects of fire protection on savanna structure in Central Brazil. J Biogeogr 27:1021–1029CrossRefGoogle Scholar
  43. Nogueira EM, Nelson BW, Fearnside PM et al (2008) Tree height in Brazil’s “arc of deforestation”: shorter trees in south and southwest Amazonia imply lower biomass. For Ecol Manag 255:2963–2972. CrossRefGoogle Scholar
  44. Oksanen J, Blanchet FG, Friendly M et al (2016) vegan: community ecology package. R package version 2.4-0Google Scholar
  45. Oliveira B, Marimon Junior BH, Mews HA et al (2016) Unraveling the ecosystem functions in the Amazonia-Cerrado transition: evidence of hyperdynamic nutrient cycling. Plant Ecol 218:225–239. CrossRefGoogle Scholar
  46. Oliveira-Filho AT, Ratter JA (1995) A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinb J Bot 52:141. CrossRefGoogle Scholar
  47. Passos FB, Lopes CM, Aquino FG, Ribeiro JF (2014) Nurse plant effect of Solanum lycocarpum A. St.-Hil. in area of Brazilian Savanna undergoing a process of restoration. Braz J Bot 37:251–259. CrossRefGoogle Scholar
  48. Pellegrini AFA, Socolar JB, Elsen PR, Giam X (2016) Trade-offs between savanna woody plant diversity and carbon storage in the Brazilian Cerrado. Glob Chang Biol 22:3373–3382. CrossRefPubMedGoogle Scholar
  49. Peltzer DA, Wardle DA, Allison VJ et al (2010) Understanding ecosystem retrogression. Ecol Monogr 80:509–529. CrossRefGoogle Scholar
  50. Phillips OL, Gentry AH (1994) Increasing turnover through time in tropical forests. Science 263:954–958. CrossRefPubMedGoogle Scholar
  51. Phillips OL, Malhi Y, Higuchi N et al (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442CrossRefPubMedGoogle Scholar
  52. Phillips OL, Higuchi N, Vieira S et al (2009) Changes in Amazonian forest biomass, dynamics and composition, 1980–2002. In: Bustamante MKM, Gash J, Dias PS (eds) Amazonia and global change. American Geophysical Union, Washington, D. C., pp 373–387CrossRefGoogle Scholar
  53. Phillips OL, Baker TR, Brienen R, Feldpausch TR (2010) Field manual for plot establishment and remeasurement.
  54. Ratajczak Z, Nippert JB, Collins SL (2012) Woody encroachment decreases diversity across North American grasslands and savannas. Ecology 93:697–703CrossRefPubMedGoogle Scholar
  55. Ratter JA (1992) Transitions between cerrado and forest vegetation in Brazil. In: Furley PA, Procter J, Ratter JA (eds) Nature and dynamics of forest-savanna boundaries, 1a. Chapman & Hall, London, pp 417–429Google Scholar
  56. Ratter JA, Richards PW, Argent G, Gifford DR (1973) Observations on the vegetation of Northeastern Mato Grosso: I. The woody vegetation types of the Xavantina-Cachimbo expedition area. Philos Trans R Soc B Biol Sci 266:449–492. CrossRefGoogle Scholar
  57. Ribeiro JF, Walter BM (2008) As principais fitofisionomias do Bioma Cerrado. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: Ecologia e Flora. Embrapa Informação Tecnológica, Brasilia - DF, pp 151–212Google Scholar
  58. R Core Team (2016) R: a language and environment for statistical computing, reference index version 1.0.136. R Foundation for statistical computing, Vienna, AustriaGoogle Scholar
  59. Scolforo JRS, Rufini AL, Mello JM et al (2008) Equações para o peso de matéria seca das fisionomias, em Minas Gerais. In: Scolforo JR, Oliveira AD, Acerbi Júnior FW (eds) Inventário Florestal de Minas Gerais - Equações de Volume, Peso de Matéria Seca e Carbono para Diferentes Fisionomias da Flora Nativa2. UFLA, Lavras, pp 103–114Google Scholar
  60. Sheil D, Burslem DFRP, Alder D (1995) The interpretation and misinterpretation of mortality rate measures. J Ecol 83:331–333CrossRefGoogle Scholar
  61. Sheil D, Jennings S, Savill P (2000) Long-term permanent plot observations of vegetation dynamics in Budongo, a Ugandan Rain Forest. J Trop Ecol 16:765–800CrossRefGoogle Scholar
  62. Silva LCR, Hoffmann WA, Rossatto DR et al (2013) Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant Soil 373:829–842. CrossRefGoogle Scholar
  63. Veenendaal EM, Torello-Raventos M, Feldpausch TR et al (2015) Structural, physiognomic and above-ground biomass variation in savanna-forest transition zones on three continents—how different are co-occurring savanna and forest formations? Biogeosciences 12:2927–2951CrossRefGoogle Scholar
  64. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  65. Vidotto E, Pessenda LCR, Ribeiro ADS et al (2007) Dinâmica do ecótono floresta-campo no sul do estado do Amazonas no Holoceno, através de estudos isotópicos e fitossociológicos. Acta Amaz 37:385–400CrossRefGoogle Scholar
  66. Whittaker RH (1953) A Consideration of climax theory: the climax as a population and pattern. Ecol Monogr 23:41–78. CrossRefGoogle Scholar
  67. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar
  68. Yarranton G, Morrison R (1974) Spatial dynamics of a primary succession: nucleation. J Ecol 62:417–428. CrossRefGoogle Scholar
  69. Zar JH (2010) Biostatistical analysis, 5o edn. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar

Copyright information

© Botanical Society of Sao Paulo 2018

Authors and Affiliations

  • Fábio Barbosa Passos
    • 1
  • Beatriz Schwantes Marimon
    • 2
    Email author
  • Oliver L. Phillips
    • 3
  • Paulo Sérgio Morandi
    • 1
  • Eder Carvalho das Neves
    • 2
  • Fernando Elias
    • 2
  • Simone Matias Reis
    • 2
  • Bianca de Oliveira
    • 2
  • Ted R. Feldpausch
    • 4
  • Ben Hur Marimon Júnior
    • 2
  1. 1.Programa de Pós-graduação em Biodiversidade e BiotecnologiaRede BIONORTECampus de Nova XavantinaBrazil
  2. 2.Universidade do Estado de Mato Grosso – UNEMATCampus de Nova XavantinaBrazil
  3. 3.School of GeographyUniversity of LeedsLeedsUK
  4. 4.College of Life and Environmental SciencesUniversity of ExeterExeterUK

Personalised recommendations