Brazilian Journal of Botany

, Volume 41, Issue 2, pp 319–327 | Cite as

Viability of biodiesel production from a thermophilic microalga in conventional and alternative culture media

  • Emmanuel Bezerra D’Alessandro
  • Aline Terra Soares
  • Julião Pereira
  • Nelson Roberto Antoniosi Filho
Original Article


Microalgae biodiesel production depends on several factors to minimize the costs of the production process from both biomass and biodiesel. In some outdoor systems, the temperature can be higher than 35 °C, which is lethal for several algae. Prospecting microalga from thermal environments seems to be a good option. Therefore, the objective of this work was to isolate a microalga (Acutodesmus obliquus (Turpin) Hegewald and Hanagata) from thermal water and evaluate its cultivation productivity in Bold Basal Medium (BBM) and in lower cost alternative media. One alternative medium contained only the main growth ingredients (DAF), the other included these same ingredients with the addition of wastewater from the purification of grease-based raw materials (DAF + OGR). Microalga biodiesel productivity was also compared with the biodiesel yield of soybean, which is one of the main raw materials currently used for biodiesel production. The microalga was shown to provide biomass with similar productivity using the three different culture media in log phase. The microalga exhibited biodiesel productivity from 46 to 61 times higher than soybean; using 5.5–7.2% of the water and 1.6–2.2% of the land required for soybean cultivation to produce the same amount of biodiesel. The DAF + OGR medium, which costs 29% of the cost of the BBM medium, proved to be an efficient alternative medium compared to other in biomass productivity. Levels of tri-unsaturated and polyunsaturated fatty acids from A. obliquus microalga were slightly higher than those standardized by EN14214, requiring that the biodiesel be mixed with antioxidants.


Biofuels Cost Fatty acids Wastewater 



The infrastructure used in this project was funded by a project grant from the Financier of Studies and Projects (FINEP) and Foundation of Research Support (FUNAPE) of the Brazilian Ministry of Science, Technology, Innovation and Communications (MCTIC), Process No. 01.10.0457.00. National Council for Scientific and Technological Development also funded this project (CNPq), Process No. 407556/2013-3. NRAF is a CNPq fellow, Process No. 312019/2013-0. EBD is a CNPq fellow, Process No. 141501/2013-8. Alene Alder-Rangel reviewed the English language.

Authors’ contribution

EBD performed the experiments, collected, and cultivated the microalga, analyzed the collected data, and wrote the main part of the manuscript. JP analyzed the chemical elements in ICP-OES. ATS analyzed the gas and mass chromatography data of fatty acids. NRAF conceived and designed the research, reviewed the manuscript, participated in writing, and obtained a grant from the FINEP & FUNAPE (Financiadora de Estudos e Projetos & Fundação de Apoio a Pesquisa) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).


  1. Andersen RA (2005) Algal culturing techniques. Elsevier Academic Press, BurlingtonGoogle Scholar
  2. Apha (1998) Standard methods for examination of water and wastewater, 20th edn. Ediciones Diaz de Santos S.A/American Public Health Association; American Water Works Association/Water Pollution Control Federation, MadridGoogle Scholar
  3. Azeredo WA (2014) Otimização da produção de biodiesel metílico a partir de óleos de fritura residuais (OFR). Universidade Federal de GoiásGoogle Scholar
  4. Bajhaiya A, Kkmandotra S, Suseela MR (2010) Algal biodiesel: the next generation biofuel for India. Asian J Exp Biol Sci 1:728–739Google Scholar
  5. Bamba BSB, Lozano P, Adjé F et al (2015) Effects of temperature and other operational parameters on chlorella vulgaris mass cultivation in a simple and low-cost column photobioreactor. Appl Biochem Biotechnol 177:389–406. CrossRefPubMedGoogle Scholar
  6. Barsanti L, Gualtieri P (2006) Algae: anatomy, biochemistry, and biotechnology. CRC Press Book, Boca RatonGoogle Scholar
  7. Brasil (2016) Lei no 13.263, de 23 de março de 2016. Diário Of da União 1:1Google Scholar
  8. Camargo RPL (2016) Produção e avaliação físico-química e ecotoxicológica de biodiesel etílico de óleos residuais de fritura. Universidade Federal de GoiásGoogle Scholar
  9. Campos JEG, de Almeida L (2012) Balanço térmico aplicado à recarga artificial dos aquíferos da região de Caldas Novas, estado de Goiás. Braz J Geol 42:196–207Google Scholar
  10. Carrim AJ (2016) Produção e avaliação físico-química, ecotoxicológica e microbiológica de biodiesel metílico de óleo residual de fritura (ORF). Universidade Federal de GoiásGoogle Scholar
  11. Chavan KJ, Chouhan S, Jain S et al (2014) Environmental factors influencing algal biodiesel production. Environ Eng Sci 31:602–611. CrossRefGoogle Scholar
  12. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. CrossRefPubMedGoogle Scholar
  13. Chisti Y (2012) Raceways-based production of algal crude oil. In: Posten C, Walter C (eds) Microalgal biotechnology: potential and production. de Gruyter, Berlin, pp 113–146Google Scholar
  14. Cooney MJ, Young G, Pate R (2011) Bio-oil from photosynthetic microalgae: case study. Bioresour Technol 102:166–177. CrossRefPubMedGoogle Scholar
  15. D’Alessandro EB, Antoniosi-Filho NR (2016) Concepts and studies on lipid and pigments of microalgae: a review. Renew Sustain Energy Rev 58:832–841. CrossRefGoogle Scholar
  16. Darki BZ, Seyfabadi J, Fayazi S et al (2017) Effect of nutrients on total lipid content and fatty acids profile of Scenedesmus obliquus. Braz Arch Biol Technol. Google Scholar
  17. D’Agosto MA, Silva MAV, Oliveira CM et al (2015) Evaluating the potential of the use of biodiesel for power generation in Brazil. Renew Sustain Energy Rev 43:807–817. CrossRefGoogle Scholar
  18. Duong VT, Ahmed F, Thomas-Hall SR et al (2015) High protein- and high lipid-producing microalgae from northern Australia as potential feedstock for animal feed and biodiesel. Front Bioenergy Biotechnol 3:1–7. Google Scholar
  19. European Union (2010) EN 14214 Automotive fuels—fatty acid methyl esters (FAME) for diesel engines—Requirements and test methods. In: European Committee for StandardizationGoogle Scholar
  20. Feng P, Yang K, Xu Z et al (2014) Growth and lipid accumulation characteristics of Scenedesmus obliquus in semi-continuous cultivation outdoors for biodiesel feedstock production. Bioresour Technol 173:406–414. CrossRefPubMedGoogle Scholar
  21. Franzese PP, Cavalett O, Häyhä T, D’Angelo S (2013) Integrated environmental assessment of agricultural and farming production systems in the Toledo River Basin (Brazil). United Nations Educational, ParisGoogle Scholar
  22. Hartman L, Lago RC (1973) Rapid preparation of fatty acid methyl esters from lipids. Lab Pract 22:475–476PubMedGoogle Scholar
  23. Ho S-H, Chang J-S, Lai Y-Y, Chen C-NN (2014) Achieving high lipid productivity of a thermotolerant microalga Desmodesmus sp. F2 by optimizing environmental factors and nutrient conditions. Bioresour Technol 156:108–116. CrossRefPubMedGoogle Scholar
  24. Hu Q, Sommerfeld M, Jarvis E et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639. CrossRefPubMedGoogle Scholar
  25. Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070. CrossRefGoogle Scholar
  26. Krzemińska I, Pawlik-Skowrońska B, Trzcińska M, Tys J (2014) Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess Biosyst Eng 37:735–741. CrossRefPubMedGoogle Scholar
  27. Lin J-H, Lee D-J, Chang J-S (2015) Lutein production from biomass: marigold flowers versus microalgae. Bioresour Technol 184:421–428. CrossRefPubMedGoogle Scholar
  28. Liu B, Benning C (2013) Lipid metabolism in microalgae distinguishes itself. Curr Opin Biotechnol 24:300–309. CrossRefPubMedGoogle Scholar
  29. Lobato EJV (2005) Estação evaporimétrica de Goiânia: normais climatológicas (1975–2004). EAEA, GoiâniaGoogle Scholar
  30. Lourenço SO (2006) Cultivo de microalgas marinhas: princípios e aplicações. RimaGoogle Scholar
  31. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232. CrossRefGoogle Scholar
  32. Menezes RS, Leles MIG, Soares AT et al (2013) Avaliação da potencialidade de microalgas dulcícolas como fonte de matéria-prima graxa para a produção de biodiesel. Quim Nova 36:10–15. CrossRefGoogle Scholar
  33. Menezes RS, Soares AT, Marques-Júnior JG et al (2016) Culture medium influence on growth, fatty acid, and pigment composition of Choricystis minor var. minor: a suitable microalga for biodiesel production. J Appl Phycol 28:2679–2686. CrossRefGoogle Scholar
  34. Muylaert K, Beuckels A, Depraetere O et al (2015) Wastewater as a source of nutrients for microalgae biomass production. In: Moheimani NR, McHenry MP, de Boer K, Bahri PA (eds) Biomass and biofuels from microalgae. Springer, Cham, pp 75–94Google Scholar
  35. Onay M, Sonmez C, Oktem HA, Yucel AM (2014) Thermo-resistant green microalgae for effective biodiesel production: isolation and characterization of unialgal species from geothermal flora of Central Anatolia. Bioresour Technol 169:62–71. CrossRefPubMedGoogle Scholar
  36. Parsaeimehr A, Mancera-Andrade EI, Robledo-Padilla F et al (2017) A chemical approach to manipulate the algal growth, lipid content and high-value alpha-linolenic acid for biodiesel production. Algal Res 26:312–322. CrossRefGoogle Scholar
  37. Pereira DA, Rodrigues VO, Gómez SV et al (2013) Parametric sensitivity analysis for temperature control in outdoor photobioreactors. Bioresour Technol 144:548–553. CrossRefPubMedGoogle Scholar
  38. Radzun KA, Wolf J, Jakob G et al (2015) Automated nutrient screening system enables high-throughput optimisation of microalgae production conditions. Biotechnol Biofuels 8:65. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Satyanarayana KG, Mariano AB, Vargas JVC (2011) A review on microalgae, a versatile source for sustainable energy and materials. Int J Energy Res 35:291–311. CrossRefGoogle Scholar
  40. Sforza E, Gris B, Silva CEF et al (2014) Effects of light on cultivation of Scenedesmus Obliquus in batch and continuous flat plate photobioreactor. Chem Eng Trans 38:211–216. Google Scholar
  41. Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38. CrossRefGoogle Scholar
  42. Smith-Bädorf HD, Chuck CJ, Mokebo KR et al (2013) Bioprospecting the thermal waters of the Roman baths: isolation of oleaginous species and analysis of the FAME profile for biodiesel production. AMB Express 3:9. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Soares AT, da Costa DC, Silva BF et al (2014) Comparative analysis of the fatty acid composition of microalgae obtained by different oil extraction methods and direct biomass transesterification. BioEnergy Res 7:1035–1044. CrossRefGoogle Scholar
  44. Teoh M-L, Phang S-M, Chu W-L (2013) Response of Antarctic, temperate, and tropical microalgae to temperature stress. J Appl Phycol 25:285–297. CrossRefGoogle Scholar
  45. Trentacoste EM, Martinez AM, Zenk T (2015) The place of algae in agriculture: policies for algal biomass production. Photosynth Res 123:305–315. CrossRefPubMedGoogle Scholar
  46. Wolf J, Ross IL, Radzun KA et al (2015) High-throughput screen for high performance microalgae strain selection and integrated media design. Algal Res 11:313–325. CrossRefGoogle Scholar

Copyright information

© Botanical Society of Sao Paulo 2018

Authors and Affiliations

  1. 1.Instituto de QuímicaUniversidade Federal de GoiásGoiâniaBrazil

Personalised recommendations