Brazilian Journal of Botany

, Volume 41, Issue 3, pp 589–600 | Cite as

Assessing the effects of rainfall reduction on litterfall and the litter layer in phytophysiognomies of the Amazonia–Cerrado transition

  • Karine da S. Peixoto
  • Ben Hur Marimon-Junior
  • Kelen A. Cavalheiro
  • Naiane A. Silva
  • Eder C. das Neves
  • Renata Freitag
  • Henrique A. Mews
  • Marco Bruno X. Valadão
  • e Beatriz S. Marimon
Original Article


The tropical vegetation growing in dystrophic soils is capable of recycling nutrients through litterfall and thus maintaining soil fertility. However, climate changes can alter this production and, consequently, the litter layer over the soil, affecting the carbon cycle and the integrity of the ecosystem. In this study, we investigated whether a reduction in rainfall increased the litterfall and the litter layer (stock) and, if so, whether the effects are more evident in degraded environments. We compared the litterfall and the litter layer in years with higher (1575.3 mm) and lower (1360.8 mm) rainfall rates in three environments: “cerradão” (CD; savanna woodland), typical “cerrado” (savanna-like vegetation) and successional area (SA). We recorded increasing litterfall in the SA and in the litter layer in the three environments during the year with lower rainfall rates. We also detected alterations to the seasonal variation in the litter layer and the production of reproductive parts. The reduction in rainfall increased the return of carbon to the soil, especially in open areas. Our results indicate that climatic extremes (e.g., reduced rainfall) can modify the availability of nutrients and their absorption by plants and therefore compromising important ecosystem functions, such as carbon cycle.


Carbon stock “cerradão” Climate changes Ecosystem functions Nutrient cycling Secondary succession 



We would like to thank the members of the “Laboratório de Ecologia Vegetal” Plant Ecology Laboratory (UNEMAT) who helped with the fieldwork. We also thanks to “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES) for the scholarship granted to K.S. Peixoto, R. Freitag, E.C. Neves, M.B.X. Valadão, and to the “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq) for productivity in research grant (PQ-2) awarded to B.H. Marimon-Junior and B.S. Marimon. This study was supported by Project PELD-CNPq (#403725/2012-7) coordinated by B.S. Marimon and projects PPBio-CNPq (#457602/2012-0) and NAS/PEER-USAID (Biodiversity and Climate Changes in the Arc of Deforestation) coordinated by B.H. Marimon-Junior and Guarino R. Colli, respectively.


  1. Aduan RE, Vilela MF, Klink CA (2003) Ciclagem de carbono em ecossistemas terrestres - o caso do Cerrado brasileiro. Embrapa Cerrados, BrasíliaGoogle Scholar
  2. Almeida EJ, Luizão F, Rodrigues DJ (2015) Litterfall production in intact and selectively logged forests in southern of Amazonia as a function of basal area of vegetation and plant density. Acta Amaz 45:157–166CrossRefGoogle Scholar
  3. Aragão LEOC, Malhi Y, Metcalfe DB, Silva-Espejo JE, Jiménez E, Navarrete D, Almeida S, Costa ACL, Salinas N, Phillips OL, Anderson LO, Baker TR, Goncalvez PH, Huamán-Ovalle J, Mamani-Solórzano M, Meir P, Monteagudo A, Peñuela MC, Prieto A, Quesada CA, Rozas-Dávila A, Rudas A, Silva Junior JA, Vásquez R (2009) Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences 6:2441–2488CrossRefGoogle Scholar
  4. Aragão LEOC, Poulter B, Barlow JB, Anderson LOO, Malhi Y, Saatchi S, Phillips OL, Gloor E (2014) Environmental change and the carbon balance of Amazonian forests. Biol Rev 89:913–931CrossRefPubMedGoogle Scholar
  5. Araujo-Murakami A, Doughty CE, Metcalfe DB, Silva-Espejo JE, Arroyo L, Heredia JP, Flores M, Sibler R, Mendizabal LM, Pardo-Toledo E, Vega M, Moreno L, Rojas-Landivar VD, Halladay K, Girardin CAJ, Killeen TJ, Malhi Y (2014) The productivity, allocation and cycling of carbon in forests at the dry margin of the Amazon forest in Bolivia. Plant Ecol Divers 7:55–69CrossRefGoogle Scholar
  6. Aryal DR, De Jong BHJ, Ochoa-Gaona S, Esparza-Olguin L, Mendoza-Vega J (2014) Agriculture, ecosystems and environment carbon stocks and changes in tropical secondary forests of southern Mexico. Agr Ecosyst Environ 195:220–230CrossRefGoogle Scholar
  7. Aryal DR, De Jong BHJ, Ochoa-Gaona S, Mendoza-Vega J, Esparza-Olguin L (2015) Successional and seasonal variation in litterfall and associated nutrient transfer in semi-evergreen tropical forests of SE Mexico. Nutr Cycl Agroecosys 103:45–60CrossRefGoogle Scholar
  8. Ball BA, Carrillo Y, Molina M (2014) The influence of litter composition across the litter-soil interface on mass loss, nitrogen dynamics and the decomposer community. Soil Biol Biochem 69:71–82CrossRefGoogle Scholar
  9. Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  10. Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163CrossRefGoogle Scholar
  11. Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. Forest Ecol Manag 133:13–22CrossRefGoogle Scholar
  12. Brando PM, Nepstad DC, Davidson EA, Trumbore SE, Ray D, Camargo P (2008) Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos T Roy Soc B 363:1839–1848CrossRefGoogle Scholar
  13. Brando PM, Goetz SJ, Baccini A, Nepstad DC, Beck PSA, Christman MC (2010) Seasonal and interannual variability of climate and vegetation indices across the Amazon. PNAS 107:14685–14690CrossRefPubMedGoogle Scholar
  14. Bréchet L, Ponton S, Roy J, Freycon V, Coûteaux MM, Bonal D, Epron D (2009) Do tree species characteristics influence soil respiration in tropical forests? A test based on 16 tree species planted in monospecific plots. Plant Soil 319:235–246CrossRefGoogle Scholar
  15. Celentano D, Zahawi RA, Finegan B, Ostertag R, Cole RJ, Holl KD (2011) Litterfall dynamics under different tropical forest restoration strategies in costa rica. Biotropica 43:279–287CrossRefGoogle Scholar
  16. Chave J, Navarrete D, Almeida S, Álvarez E, Aragão LEOC, Bonal D, Châtelet P, Silva-Espejo JE, Goret JY, Von Hildebrand P, Jiménez E, Patiño S, Peñuela MC, Phillips OL, Stevenson P, Malhi Y (2010) Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7:43–55CrossRefGoogle Scholar
  17. Chen X, Hutley LB, Eamus D (2003) Carbon balance of a tropical savanna of northern Australia. Oecologia 137:405–416CrossRefPubMedGoogle Scholar
  18. Cheung KC, Marques MCM, Liebsch D (2009) Relação entre a presença de vegetação herbácea e a regeneração natural de espécies lenhosas em pastagens abandonadas na Floresta Ombrófila Densa do Sul do Brasil. Acta Bot Bras 23:1048–1056CrossRefGoogle Scholar
  19. Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J (2001) Measuring net primary production in forests: concepts and field methods. Ecol Appl 11:356–370CrossRefGoogle Scholar
  20. Davidson EA, Savage K, Bolstad P, Clark DA, Curtis PS, Ellsworth DS, Hanson PJ, Law BE, Luo Y, Pregitzer KS, Randolph JC, Zak D (2002) Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agr Forest Meteorol 113:39–51CrossRefGoogle Scholar
  21. Davidson EA, Araújo AC, Artaxo P, Balch JK, Brown IF, Bustamante MMC, Coe MT, DeFries RS, Keller M, Longo M, Munger JW, Schoroeder W, Soares-Filho BS, Souza Júnior CM, Wofsy SC (2012) The Amazon basin in transition. Nature 481:321–328CrossRefPubMedGoogle Scholar
  22. Facelli JM, Pickett STA (1991) Plant litter: its dynamics and effects on plant community structure. Bot Rev 57:1–32CrossRefGoogle Scholar
  23. Feldpausch TR, Rondon MA, Fernandes ECM, Riha SJ (2004) Carbon and nutrient accumulation in secondary forests regenerating on pastures in central Amazonia. Ecol Appl 14:S164–S176CrossRefGoogle Scholar
  24. Fernandes SAP, Bernoux M, Cerri CC, Feigl BJ, Piccolo MC (2002) Seasonal variation of soil chemical properties and CO2 and CH4 fluxes in unfertilized and P-fertilized pastures in an Ultisol of the Brazilian Amazon. Geoderma 107:227–241CrossRefGoogle Scholar
  25. Franczak DD, Marimon BS, Marimon-Junior BH, Mews HA, Maracahipes L, Oliveira EA (2011) Changes in the structure of a savanna forest over a six-year period in the Amazon–Cerrado transition, Mato Grosso state, Brazil. Rodriguésia 62:425–436CrossRefGoogle Scholar
  26. Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecol Manag 148:185–206CrossRefGoogle Scholar
  27. Günter S, Weber M, Erreis R, Aguirre N (2007) Influence of distance to forest edges on natural regeneration of abandoned pastures: a case study in the tropical mountain rain forest of Southern Ecuador. Eur J Forest Res 126:67–75CrossRefGoogle Scholar
  28. Hoffmann WA, Silva ER, Machado GC, Bucci SJ, Scholz FG, Goldstein G, Meinzer FC (2005) Seasonal leaf dynamics across a tree density gradient in a Brazilian savanna. Oecologia 145:307–316CrossRefPubMedGoogle Scholar
  29. Holl KD (1999) Factors limiting tropical rain forest regeneration in abandoned pasture: seed rain, seed germination, microclimate, and soil. Biotropica 31:229–242CrossRefGoogle Scholar
  30. Honorio-Coronado EM, Baker TR (2010) Manual para el monitoreo del ciclo del carbon en bosques amazónicos. Instituto de Investigaciones de la Amazonia Peruana, Universidad de Leeds, LimaGoogle Scholar
  31. Houghton RA (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus 55B:378–390Google Scholar
  32. Huasco WH, Girardin CAJ, Doughty CE, Metcalfe DB, Baca LD, Silva-Espejo JE, Cabrera DG, Aragão LEOC, Davila AR, Marthews TR, Huaraca-Quispe LP, Alzamora-Taype I, Mora LE, Farfán-Rios W, Cabrera KG, Halladay K, Salinas-Revilla N, Silman MR, Meir P, Malhi Y (2013) Seasonal production, allocation and cycling of carbon in two mid-elevation tropical montane forest plots in the Peruvian Andes. Plant Ecol Divers 7:125–142CrossRefGoogle Scholar
  33. Kenward MG, Roger JH (2013) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997CrossRefGoogle Scholar
  34. Lenth RV (2016) Least-squares means: the R package lsmeans. J Stat Softw 69:1–33CrossRefGoogle Scholar
  35. Lüdecke D (2016) sjPlot: data visualization for statistics in social science. R package version 2.1.2.
  36. Malhi Y (2012) The productivity, metabolism and carbon cycle of tropical forest vegetation. J Ecol 100:65–75CrossRefGoogle Scholar
  37. Malhi Y, Grace J (2000) Tropical forests and atmospheric carbon dioxide. Trends Ecol Evol 15:332–337CrossRefPubMedGoogle Scholar
  38. Malhi Y, Nobre AD, Grace J, Kruijt B, Pereira MGP, Culf A, Scott S (1998) Carbon dioxide transfer over a Central Amazonian rain forest. J Geophys Res 103:593–612CrossRefGoogle Scholar
  39. Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA (2008) Climate change, deforestation, and the fate of the Amazon. Science 319:169–172CrossRefPubMedGoogle Scholar
  40. Malhi Y, Aragão LEOC, Metcalfe DB, Paiva R, Quesada CA, Almeida S, Anderson L, Brando P, Chambers JQ, Costa ACL, Hutyra LR, Oliveira P, Patiño S, Pyle EH, Robertson AL, Teixeira LM (2009) Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Glob Change Biol 15:1255–1274CrossRefGoogle Scholar
  41. Malhi Y, Doughty C, Galbraith D (2011) The allocation of ecosystem net primary productivity in tropical forests. Philos T Roy Soc B 366:3225–3245CrossRefGoogle Scholar
  42. Marimon BS, Lima ES, Duarte TG, Chieregatto LC, Ratter JA (2006) Observations on the Vegetation of Northeastern Mato Grosso, Brazil. IV. An Analysis of the Cerrado–Amazonian forest ecotone. Edinb J Bot 63:323–341CrossRefGoogle Scholar
  43. Marimon BS, Marimon-Junior BH, Feldpausch TR, Oliveira-Santos C, Mews HA, Lopez-Gonzalez G, Lloyd J, Franczak DD, Oliveira EA, Maracahipes L, Miguel A, Lenza E, Phillips OL (2014) Disequilibrium and hyperdynamic tree turnover at the forest–Cerrado transition zone in southern Amazonia. Plant Ecol Divers 7:281–292CrossRefGoogle Scholar
  44. Marimon-Junior BH, Haridasan M (2005) Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre o solo distrófico no leste de Mato Grosso, Brasil. Acta Bot Bras 19:913–926CrossRefGoogle Scholar
  45. Marimon-Junior BH, Hay JD (2008) A new instrument for measurement and collection of quantitative samples of the litter layer in forests. Forest Ecol Manag 255:2244–2250CrossRefGoogle Scholar
  46. Meir P, Metcalfe DB, Costa ACL, Fisher RA (2008) The fate of assimilated carbon during drought: impacts on respiration in Amazon rainforests. Philos T Roy Soc B 363:1849–1855CrossRefGoogle Scholar
  47. Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626CrossRefGoogle Scholar
  48. Melo-Santos KS (2015) Dinâmica e sucessão de uma pastagem abandonada na transição Amazônia–Cerrado. Universidade do Estado de Mato Grosso, Nova Xavantina, Mato GrossoGoogle Scholar
  49. Mews HA, Marimon BS, Maracahipes L, Franczak DD, Marimon-Junior BH (2011) Dinâmica da comunidade lenhosa de um Cerrado Típico na região Nordeste do Estado de Mato Grosso, Brasil. Biota Neotrop 11:73–82CrossRefGoogle Scholar
  50. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142CrossRefGoogle Scholar
  51. Nepstad DC, Uhl C, Pereira CA, Silva JMC (1996) A comparative of tree establishment in abandoned pasture and mature forest of eastern Amazonia. Oikos 76:25–39CrossRefGoogle Scholar
  52. Nepstad D, Lefebvre P, Silva UL, Tomasella J, Schlesinger P, Solórzano L, Moutinho P, Ray D, Benito JG (2004) Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis. Glob Change Biol 10:704–717CrossRefGoogle Scholar
  53. Nogueira EM, Nelson BW, Fearnside PM, França MB, Oliveira ÁCA (2008) Tree height in Brazil’s “arc of deforestation”: shorter trees in south and southwest Amazonia imply lower biomass. Forest Ecol Manag 255:2963–2972CrossRefGoogle Scholar
  54. Oliveira B, Marimon-Junior BH, Mews HA, Valadao MBX, Marimon BS (2017) Unraveling the ecosystem functions in the Amazonia-Cerrado transition: evidence of hyperdynamic nutrient cycling. Plant Ecol 218:225–239. CrossRefGoogle Scholar
  55. Phillips OL, Malhi Y, Higuchi N, Laurance WF, Nu PV, Laurance SG, Ferreira LV, Stern M, Brown S, Grace J (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442CrossRefPubMedGoogle Scholar
  56. Pinto-Junior OB, Sanches L, Dalmolin AC, Nogueira JS (2009) Efluxo de CO2 do solo em floresta de transição Amazônia Cerrado e em área de pastagem. Acta Amaz 39:813–822CrossRefGoogle Scholar
  57. Pires LA, Britez RM, Martel G, Pagano SN (2006) Produção, acúmulo e decomposição da serapilheira em uma restinga da Ilha do Mel, Paranaguá, PR, Brasil. Acta Bot Bras 20:173–184CrossRefGoogle Scholar
  58. Rocha W, Metcalfe DB, Doughty CE, Brando P, Silvério D, Halladay K, Nepstad DC, Balch JK, Malhi Y (2014) Ecosystem productivity and carbon cycling in intact and annually burnt forest at the dry southern limit of the Amazon rainforest (Mato Grosso, Brazil). Plant Ecol Divers 7:25–40CrossRefGoogle Scholar
  59. Sakai S, Harrison RD, Momose K, Kuraji K, Nagamasu H, Yasunari T, Chong L, Nakashizuka T (2006) Irregular droughts trigger mass flowering in a seasonal tropical forests in Asia. Am J Bot 93:1134–1139CrossRefPubMedGoogle Scholar
  60. Sanches L, Valentini CMA, Pinto Júnior OB, Nogueira JS, Vourlitis GL, Biudes MS, Silva CJ, Bambi P, Lobo FA (2008) Seasonal and interannual litter dynamics of a tropical semideciduous forest of the southern Amazon Basin, Brazil. J Geophys Res 113:1–9CrossRefGoogle Scholar
  61. Sayer EJ, Tanner EVJ, Cheesman AW (2006) Increased litterfall changes fine root distribution in a moist tropical forest. Plant Soil 281:5–13CrossRefGoogle Scholar
  62. Silva FAM, Assad ED, Evangelista BA (2008) Caracterização climática do bioma Cerrado. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: ecologia e flora. Embrapa Informação Tecnológica, Brasília, pp 69–106Google Scholar
  63. Tian H, Melillo JM, Kicklighter DW, McGuire AD, Helfrich JVK, Moore B, Vörösmarty CJ (1998) Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 396:664–667CrossRefGoogle Scholar
  64. Uriarte M, Turner BL, Thompson J, Zimmerman JK (2015) Linking spatial patterns of leaf litterfall and soil nutrients in a tropical forest: a neighborhood approach. Ecol Appl 25:2022–2034CrossRefPubMedGoogle Scholar
  65. Varella RF, Bustamante MMC, Pinto AS, Kisselle KW, Santos RV, Burke RA, Zepp RG, Viana LT (2004) Soil fluxes of CO2, CH4 and N2O from an old pasture and from native savanna in Brazil. Int J Wildland Fire 14:S221–S231Google Scholar
  66. Walter H (1986) Vegetação e zonas climáticas: Tratado de Ecologia Global. EPU, São PauloGoogle Scholar
  67. Wang Q, Wang S, Fan B, Yu X (2007) Litter production, leaf litter decomposition and nutrient return in Cunninghamia lanceolata plantations in south China: effect of planting conifers with broadleaved species. Plant Soil 297:201–211CrossRefGoogle Scholar
  68. Werneck MS, Pedralli G, Gieseke LF (2001) Produção de serapilheira em três trechos de uma floresta semidecídua com diferentes graus de perturbação na Estação Ecológica do Tripuí, Ouro Preto, MG. Revista Brasileira de Botânica 24:195–198Google Scholar
  69. Wieder K, Wright JS (1995) Tropical forest litter dynamics and dry season irrigation on Barro Colorado island, Panama. Ecology 76:1971–1979CrossRefGoogle Scholar
  70. Wright SJ, Carrasco C, Calderón O, Paton S (1999) The El Niño southern oscillation, variable fruit production, and famine in a tropical forest. Ecology 80:1632–1647Google Scholar
  71. Yavitt JB, Wright SJ (2001) Drought and irrigation effects on fine root dynamics in a Tropical Moist Forest, Panama. Biotropica 33:421–434CrossRefGoogle Scholar
  72. Zeng N, Mariotti A, Wetzel P (2005) Terrestrial mechanisms of interannual CO2 variability. Glob Biogeochem Cycle 19:1–15CrossRefGoogle Scholar
  73. Zhang H, Yuan W, Dong W, Liu S (2014) Seasonal patterns of litterfall in forest ecosystem worldwide. Ecol Complex 20:240–247CrossRefGoogle Scholar
  74. Zhou Y, Su J, Janssens IA, Zhou G, Xiao C (2014) Fine root and litterfall dynamics of three Korean pine (Pinus koraiensis) forests along an altitudinal gradient. Plant Soil 374:19–32CrossRefGoogle Scholar
  75. Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology. Stat Biology and Health. Springer, New York, pp 261–293Google Scholar
  76. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14CrossRefGoogle Scholar

Copyright information

© Botanical Society of Sao Paulo 2018

Authors and Affiliations

  • Karine da S. Peixoto
    • 1
  • Ben Hur Marimon-Junior
    • 1
    • 2
    • 3
  • Kelen A. Cavalheiro
    • 2
  • Naiane A. Silva
    • 2
  • Eder C. das Neves
    • 3
  • Renata Freitag
    • 1
  • Henrique A. Mews
    • 4
  • Marco Bruno X. Valadão
    • 5
  • e Beatriz S. Marimon
    • 1
    • 2
    • 3
  1. 1.Programa de Pós-Graduação em Biodiversidade e BiotecnologiaRede de Biodiversidade e Biotecnologia da Amazônia Legal (BIONORTE/UNEMAT)Nova XavantinaBrazil
  2. 2.Faculdade de Ciências Agrárias, Biológicas e Sociais AplicadasUniversidade do Estado de Mato Grosso (UNEMAT)Nova XavantinaBrazil
  3. 3.Programa de Pós-Graduação em Ecologia e ConservaçãoUniversidade do Estado de Mato Grosso (UNEMAT)Nova XavantinaBrazil
  4. 4.Centro de Ciências Biológicas e da NaturezaUniversidade Federal do AcreRio BrancoBrazil
  5. 5.Programa de Pós-Graduação em Ciências FlorestaisUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations