Brazilian Journal of Botany

, Volume 40, Issue 2, pp 475–480 | Cite as

Cross-amplification of nuclear microsatellite markers in two species of Cryptanthus Otto & A. Dietr. (Bromeliaceae)

  • Débora Maria Cavalcanti Ferreira
  • Jordana Neri
  • Clarisse Palma-Silva
  • Diego Sotero Pinangé
  • Ana Maria Benko-Iseppon
  • Rafael Batista Louzada
Original Article
  • 117 Downloads

Abstract

Thirty-eight nuclear microsatellite loci originally developed for Aechmea caudata Lindm., Orthophytum ophiuroides Louzada & Wand., Pitcairnia albiflos Herb., Vriesea gigantea (Gaud.) and V. simplex (Vell.) Beer were tested in Cryptanthus burle-marxii Leme and C. zonatus (Vis.) Vis. Of the 38 loci tested, 13 were polymorphic. Ten polymorphic microsatellite loci were selected to be amplified and genotyped in one population each of C. burle-marxii and C. zonatus. The observed and expected heterozygosity per locus in the C. burle-marxii population ranged from 0.050 to 0.850 and 0.050 to 0.770, respectively. In C. zonatus, the observed and expected heterozygosity per locus ranged from 0.167 to 0.846 and 0.290 to 0.692, respectively. The O. ophiuroides locus Op52 for the C. zonatus population and P. albiflos locus PaC05 for the two species showed significant departure from HWE. These ten polymorphic loci tested will be used to assess the genetic diversity and structure of the two species of Cryptanthus.

Keywords

Bromeliad Cryptanthus burle-marxii Cryptanthus zonatus Microsatellite Transferability 

Notes

Acknowledgements

This paper is part of the first author’s Master thesis conducted in the Programa de Pós-Graduação em Biologia Vegetal (PPGBV) from Universidade Federal de Pernambuco (UFPE). The first author thanks the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for her M.Sc. scholarship and the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE). The authors thank the Projeto Universal, funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (449686/2014-0) and the Atlantic Forest Project, funded by CNPq, NSF (DEB-0946618), Velux Stiftung and Beneficia Foundation. The authors also thank the CEIS Laboratory of the Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP)—Rio Claro, for sample genotyping.

References

  1. Alves M, Marcucci R (2015) Nomenclatural correction in Cryptanthus Otto & A. Dietrich. (Bromeliaceae–Bromelioideae). Rodriguésia 66:661–664. doi: 10.1590/2175-7860201566229 CrossRefGoogle Scholar
  2. Aoki-Gonçalves F, Louzada RB, Souza LM, Palma-Silva C (2014) Microsatellite Loci for Orthophytum ophiuroides (Bromelioideae, Bromeliaceae) species adapted to neotropical rock outcrops. Appl Plant Sci 2:1–4. doi: 10.3732/apps.1300073 CrossRefGoogle Scholar
  3. Barbará T, Martinelli G, Fay MF, Mayo SJ, Lexer C (2007) Population differentiation and species cohesion in two closely related plants adapted to Neotropical high-altitude ‘inselbergs’, Alcantarea imperialis and A. geniculata. Mol Ecol Resour 16:1981–1992. doi: 10.1111/j.1365-294X.2007.03272.x CrossRefGoogle Scholar
  4. Barbará T, Lexer C, Martinelli G, Mayo S, Fay MF, Heuertz M (2008) Within-population spatial genetic structure in four naturally fragmented species of a neotropical inselberg radiation, Alcantarea imperialis, A. geniculata, A. glaziouana and A. regina (Bromeliaceae). Heredity 101:285–296. doi: 10.1038/hdy.2008.65 CrossRefPubMedGoogle Scholar
  5. Boneh L, Kuperus P, Tienderen HV (2003) Microsatellites in the bromeliads Tillandsia fasciculata and Guzmania monostachya. Mol Ecol Notes 3:302–303. doi: 10.1046/j.1471-8286.2003.00432.x CrossRefGoogle Scholar
  6. Caddah MK, Mayer JLS, Bittrich V, Amaral MCE (2012) Species limits in the Kielmeyera coriacea complex (Calophyllaceae)—a multidisciplinary approach. Bot J Linn Soc 168:101–115. doi: 10.1111/j.1095-8339.2011.01192.x CrossRefGoogle Scholar
  7. Dieringer D, Schlötterer C (2003) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169. doi: 10.1046/j.1471-8286.2003.00351.x CrossRefGoogle Scholar
  8. Doyle JA, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf 526 tissue. Phytochem Bull 19:11–15Google Scholar
  9. Faleiro FG (2007) Marcadores Genético-Moleculares aplicados a programas de conservação e uso de recursos genéticos. Embrapa, PlanaltinaGoogle Scholar
  10. Forzza RC, Costa AF, Leme EMC, Versieux LM, Wanderley MGL, Louzada RB, Monteiro RF, Judice DM, Fernandez EP, Borges RAX, Penedo TSA, Monteiro NP, Moraes MA (2013) Bromeliaceae. In: Martinelli G, Moraes MA (eds) Livro Vermelho da Flora do Brasil. Andrea Jakobsson, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, pp 315–396Google Scholar
  11. Forzza RC, Costa A, Siqueira Filho JA, Martinelli G, Monteiro RF, Santos-Silva F, Saraiva DP, Paixão-Souza B, Louzada RB, Versieux L (2016) Bromeliaceae. In: Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB5991. Accessed 10 Nov 2015
  12. Goetze M, Louzada RB, Wanderley MGL, Souza LM, Bered F, Palma-Silva C (2013) Development of microsatellite markers for genetic diversity analysis of Aechmea caudata (Bromeliaceae) and cross-species amplification in other bromeliads. Biochem Syst Ecol 48:194–198. doi: 10.1016/j.bse.2012.12.022 CrossRefGoogle Scholar
  13. Hmeljevski KV, Ciampi MB, Baldauf C, Reis MS, Forzza RC (2013) Development of SSR Markers for Encholirium horridum (Bromeliaceae) and Transferability to Other Pitcairnioideae. Appl Plant Sci 1:1–4. doi: 10.3732/apps.1200445 CrossRefGoogle Scholar
  14. Krapp F, Wöhrmann T, Pinangé DSB, Benko-Iseppon AM, Huettel B, Weising K (2012) A set of plastid microsatellite loci for the genus Dyckia (Bromeliaceae) derived from 454 pyrosequencing. Am J Bot 99:470–473. doi: 10.3732/ajb.1200153 CrossRefGoogle Scholar
  15. Krapp F, Cruz GAS, Wöhrmann T, Benko-Iseppon AM, Weising K (2013) A set of variable plastid SSR markers for the genus Cryptanthus (Bromeliaceae). Res Plant Biol 3:18–21Google Scholar
  16. Lavor P, van den Berg C, Versieux LM (2013) Transferability of 10 nuclear microsatellite primers to Vriesea minarum (Bromeliaceae), a narrowly endemic and threatened species from Brazil. Braz J Bot 36:165–168. doi: 10.1007/s40415-013-0012-7 CrossRefGoogle Scholar
  17. Leme EMC, Siqueira Filho JA (2006) Taxonomia das bromélias dos fragmentos de mata atlântica de Pernambuco e Alagoas. In: Siqueira Filho JA, Leme EMC (eds) Fragmentos de mata atlântica do Nordeste—biodiversidade, conservação e suas bromélias. Andrea Jakobsson Estúdio, Rio de Janeiro, pp 190–381Google Scholar
  18. Louzada RB, Schulte K, Wanderley MGL, Silvestro D, Zizka G, Barfuss MHJ, Palma-Silva C (2014) Molecular phylogeny of the Brazilian endemic genus Orthophytum (Bromelioideae, Bromeliaceae) and its implications on morphological character evolution. Mol Phylogenet Evol 77:54–64. doi: 10.1016/j.ympev.2014.03.007 CrossRefPubMedGoogle Scholar
  19. Miranda FD, Gontijo ABPL, Santiliano FC, Favoreto FC, Soares TCB (2012) Transferability and characterization of microsatellite markers in five Bromeliaceae species belonging to the subfamilies Pitcairnoideae and Bromelioideae. Biota Neotrop 12:319–323CrossRefGoogle Scholar
  20. Neri J, Nazareno AG, Wendt T, Palma-Silva C (2015) Development and characterization of microsatellite markers for Vriesea simplex (Bromeliaceae) and cross-amplification in other species of Bromeliaceae. Biochem Syst Ecol 58:34–37. doi: 10.1016/j.bse.2014.10.004 CrossRefGoogle Scholar
  21. Oliveira EJ, Pádua JG, Zucchi MI, Vencovsky R, Vieira MLC (2006) Origin, evolution and genome distribution of microsatellites. Genet Mol Biol 29:294–307. doi: 10.1590/S1415-47572006000200018 CrossRefGoogle Scholar
  22. Paggi GM, Palma-Silva C, Bered F, Cidade FW, Sousa ACB, Souza AP, Wendt T, Lexer C (2008) Isolation and characterization of microsatellite loci in Pitcairnia albiflos (Bromeliaceae), an endemic bromeliad from the Atlantic Rainforest, and cross-amplification in other species. Mol Ecol Resour 8:980–982. doi: 10.1111/j.1755-0998.2008.02126.x CrossRefPubMedGoogle Scholar
  23. Palma-Silva C, Cavallari MM, Barbará T, Lexer C, Gimenes MA, Bered F, Bodanese-Zanettini MH (2007) A set of polymorphic microsatellite loci for Vriesea gigantea and Alcantarea imperialis (Bromeliaceae) and cross-amplification in other bromeliad species. Mol Ecol Notes 7:654–657. doi: 10.1111/j.1471-8286.2006.01665.x CrossRefGoogle Scholar
  24. Palma-Silva C, Lexer C, Paggi GM, Barbará T, Bered F, Bodanese-Zanettini MH (2009) Range-wide patterns of nuclear and chloroplast DNA diversity in Vriesea gigantea (Bromeliaceae), a neotropical forest species. Heredity 103:503–512. doi: 10.1038/hdy.2009.116 CrossRefPubMedGoogle Scholar
  25. Palma-Silva C, Wendt T, Pinheiro F, Barbará T, Fay MF, Cozzolino S, Lexer C (2011) Sympatric bromeliad species (Pitcairnia spp.) facilitate tests of mechanisms involved in species cohesion and reproductive isolation in Neotropical inselbergs. Mol Ecol Resour 20:3185–3201. doi: 10.1111/j.1365-294X.2011.05143.x CrossRefGoogle Scholar
  26. Ramírez-Morillo IM (1996) Systematics, phylogeny, and chromosome number evolution of Cryptanthus (Bromeliaceae). Ph.D. dissertation, University of Missouri, St. LouisGoogle Scholar
  27. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population Genetics Software for Exact Tests and Ecumenicism. J Hered 86:248–249CrossRefGoogle Scholar
  28. Rogstad SH (1992) Saturated NaCI-CTAB solution as a means of field preservation of leaves for DNA analyses. Taxon 41:701–708CrossRefGoogle Scholar
  29. Sarthou C, Boisselier-Dubayle MC, Lambourdière J, Samadi S (2003) Polymorphic microsatellites for the study of fragmented populations of Pitcairnia geyskesii L. B. Smith (Bromeliaceae), a specific saxicolous species of inselbergs in French Guiana. Mol Ecol Notes 3:221–223. doi: 10.1046/j.1471-8286.2003.00404.x CrossRefGoogle Scholar
  30. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  31. Versieux LM, Magalhães R, Calvente A (2013) Extension of the Cryptanthus range in Northeastern Brazil with new findings in the phenotypic variation including changes in the trichome’s distribution, thus enhancing the understanding of the Cryptanthus zonatus complex (Bromeliaceae). Phytotaxa 109:54–60. doi: 10.11646/phytotaxa.109.1.6 CrossRefGoogle Scholar
  32. Weising K, Nybom H, Wolff K, Kahl G (2005) DNA fingerprinting in plants: principles, methods, and applications, 2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  33. Wöhrmann T, Wagner N, Krapp F, Huettel B, Weising K (2012) Development of microsatellite markers in Fosterella rusbyi (Bromeliaceae) using 454 pyrosequencing. Am J Bot. doi: 10.3732/ajb.1100470 Google Scholar
  34. Wöhrmann T, Pinangé DSB, Krapp F, Benko-Iseppon AM, Huettel B, Weising K (2013) Development of 15 nuclear microsatellite markers in the genus Dyckia (Pitcairnioideae; Bromeliaceae) using 454 pyrosequencing. Conserv Genet Resour 5:81–84. doi: 10.1007/s12686-012-9738-y CrossRefGoogle Scholar
  35. Zanella CM, Bruxel M, Paggi GM, Goetze M, Buttow MV, Cidade FW, Bered F (2011) Genetic structure and phenotypic variation in wild populations of the medicinal tetraploid species Bromelia antiacantha (Bromeliaceae). Am J Bot 98:1511–1519. doi: 10.3732/ajb.1000458 CrossRefPubMedGoogle Scholar
  36. Zanella CM, Janke A, Paggi GM, Goetze M, Reis MS, Bered F (2012) Microsatellites in the endangered species Dyckia distachya (Bromeliaceae) and cross-amplification in other bromeliads. Int J Mol Sci 13:15859–15866. doi: 10.3390/ijms131215859 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Botanical Society of Sao Paulo 2017

Authors and Affiliations

  • Débora Maria Cavalcanti Ferreira
    • 1
  • Jordana Neri
    • 2
  • Clarisse Palma-Silva
    • 3
  • Diego Sotero Pinangé
    • 4
  • Ana Maria Benko-Iseppon
    • 5
  • Rafael Batista Louzada
    • 4
  1. 1.Programa de Pós-Graduação em Biologia VegetalUniversidade Federal de PernambucoRecifeBrazil
  2. 2.Programa de Pós-graduação em Botânica, Museu NacionalUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Programa de Pós-Graduação em Ecologia e BiodiversidadeUniversidade Estadual Paulista Júlio de Mesquita FilhoRio ClaroBrazil
  4. 4.Departamento de BotânicaUniversidade Federal de PernambucoRecifeBrazil
  5. 5.Departamento de GenéticaUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations