Brazilian Journal of Botany

, Volume 40, Issue 2, pp 517–527 | Cite as

Plant potentialities determine anatomical and histochemical diversity in Mikania glomerata Spreng. galls

  • Daniela O. Amorim
  • Bruno G. Ferreira
  • Graziela Fleury
Original Article


Arthropod gall super-hosts have distinct developmental responses to each gall inducer species. The taxa and feeding habits of the gall inducers determine each gall’s histological patterns, but the host plant imposes histological constraints on gall differentiation. Mikania glomerata Spreng. (Asteraceae) is a gall super-host, presenting at least six distinct gall morphotypes. The aim of current study was to evaluate how different species of Cecidomyiidae can manipulate the same host plant tissues, demonstrating the potentialities of M. glomerata under distinct external signaling. We compared M. glomerata anatomy and histochemistry in fusiform galls induced by Liodiplosis cylindrica (Gagné 2001) on petioles, globoid galls induced by L. spherica (Gagné 2001) on leaf laminae, and conic galls of Clinodiplosis sp. on leaf laminae as well as in non-galled leaves and petioles. Even though each gall presents several distinct features, they share anatomical and histochemical patterns, determined by the host plant potentialities. We found that the ground and dermal system tissues were manipulated differently by each inducer, generating distinct gall morphotypes. Alterations on epidermal cell shapes and suppression of the capitate glandular trichomes occured in all studied galls. We report for the first time the occurrence of nutritive cells containing starch in globoid galls. The anatomical diversity of the galls on M. glomerata seems to be more related to distinct differentiation pathways of the host plant than to the taxonomic relationships between the gall-inducing species.


Cecidomyiidae Cell redifferentiation Histochemistry Nutritive tissue Plant anatomy 



We thank Programa Institucional de Apoio a Pesquisa (PAPq/Universidade do Estado de Minas Gerais) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for first author’s scholarship; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support; Andreia Fonseca Silva (Empresa de Pesquisa Agropecuária de Minas Gerais—EPAMIG) and Dr Valéria Cid Maia (Universidade Federal do Rio de Janeiro—UFRJ) for taxonomic assistance; Wagner A. Rocha, Gabriele Andreia da Silva and Sílvia Rabelo de Sousa for technical support; Dr Rosy M.S. Isaias (Universidade Federal de Minas Gerais—UFMG) for material support and suggestions on the early versions of the manuscript; and Sofia C. Avritzer for English review.


  1. Almeida VP, Hirt AA, Raeski PA, Mika BE, Justus B, Santos VLP, Franco CRC, Paula JP, Farago PV, Budel JM (2016) Comparative morphoanatomical analysis of Mikania species. Rev Bras Farmacogn. doi: 10.1016/j.bjp.2016.05.002 Google Scholar
  2. Álvarez R, Martinez JJI, Muñoz-Viveros AL, Molist P, Abad-González J, Nieto-Nafría JM (2016) Contribution of gall microscopic structure to taxonomy of gallicolous aphids. Plant Biol 8:868–875CrossRefGoogle Scholar
  3. Bedetti CS, Ferreira BG, Castro NM, Isaias RMS (2013) The influence of parasitoidism on the anatomical and histochemical profiles of the host leaves in a galling Lepidoptera–Bauhinia ungulata system. Rev Bras Biociências 11:242–249Google Scholar
  4. Bedetti CS, Modolo LV, Isaias RMS (2014) The role of phenolics in control of auxin in galls of Piptadenia gonoacantha (Mart.) MacBr (Fabaceae: Mimosoideae). Biochem Syst Ecol 55:53–59. doi: 10.1016/j.bse.2014.02.016 CrossRefGoogle Scholar
  5. Bronner R (1992) The role of nutritive cells in the nutrition of cynipids and cecidomyiids. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 118–140Google Scholar
  6. Brundett MC, Kendrick B, Peterson CA (1991) Efficient lipid staining in plant material with Sudan Red 7B or fluoral yellow 088 in polyethylene glycolglycerol. Biotech Histochem 66:111–116. doi: 10.3109/10520299109110562 CrossRefGoogle Scholar
  7. Bukatsch F (1972) Bermerkungen zur Doppelfärbung Astrablau-Safranin. Mikrokosmos 61:255Google Scholar
  8. Carneiro RGS, Castro AC, Isaias RMS (2014) Unique histochemical gradients in a photosynthesis-deficient plant gall. S Afr J Bot 92:97–104. doi: 10.1016/j.sajb.2014.02.011 CrossRefGoogle Scholar
  9. Carneiro RGS, Pacheco P, Isaias RMS (2015) Could the extended phenotype extend to the cellular and subcellular levels in insect-induced galls? PLoS ONE 10(6):e0129331. doi: 10.1371/journal.pone.0129331 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Castro EM, Pinto JEBP, Alvarenga AA, Lima-Júnior EC, Bertolucci SKV, Silva-Filho JL, Vieira CV (2003) Crescimento e anatomia foliar em plantas jovens de Mikania glomerata Sprengel (Guaco) submetidas a diferentes fotoperíodos. Rev Ciência Agrotecnol 27:111–120Google Scholar
  11. Castro EM, Pinto JEBP, Soares AM, Melo HC, Bertolucci SKV, Vieira CV, Júnior ECL (2007) Adaptações anatômicas de folhas de Mikania glomerata Sprengel (Asteraceae), em três regiões distintas da planta, em diferentes níveis de sombreamento. Rev Bras Plantas Medicinais 9:8–16Google Scholar
  12. Castro ACR, Leite GLD, Oliveira DC, Isaias RMS (2012) Morphological patterns of a hymenopteran gall on the leaflets of Caryocar brasiliense Camb. (Caryocaraceae). Am J Plant Sci 3:921–929. doi: 10.4236/ajps.2012.37109 CrossRefGoogle Scholar
  13. Cutler DF, Botha T, Stevenson DW (2008) Plant Anatomy: an applied approach. Blackwell, MaldenGoogle Scholar
  14. David R, Carde JP (1964) Coloration defférentielle des inclusions lipidiques et terpeniques des pseudophylles du Pin maritime au moyen du réactif Nadi. Compt Rend Hebdom Séanc Acad Sci Paris 258:1338–1340Google Scholar
  15. Dawkins R (1982) The extended phenotype: the gene as the unit of selection. Oxford University Press, OxfordGoogle Scholar
  16. Dreger-Jauffret F, Shorthouse JD (1992) Diversity of gall-inducing insect and their galls. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University, New YorkGoogle Scholar
  17. Espindola Jr A, Boeger MRT, Júnior AM, Reissmann CB, Rickli FL (2009) Variação na estrutura foliar de Mikania glomerata Spreng. (Asteraceae) sob diferentes condições de luminosidade. Rev Bras Bot 32(4):749–758. doi: 10.1590/S0100-84042009000400013 Google Scholar
  18. Espírito-Santo MM, Fernandes GW (2007) How many species of gall-inducing insects are there on earth, and where are they? Ann Entomol Soc Am 100:95–99Google Scholar
  19. Fernandes WG (1994) Plant mechanical defenses against insect herbivory. Rev Bras Entomol 38:421–433Google Scholar
  20. Ferreira BG, Isaias RMS (2013) Developmental stem anatomy and tissue redifferentiation induced by a galling Lepidoptera on Marcetia taxifolia (Melastomataceae). Botany 91:752–760. doi: 10.1139/cjb-2013-0125 CrossRefGoogle Scholar
  21. Ferreira BG, Isaias RMS (2014) Floral-like destiny induced by a galling Cecidomyiidae on the axillary buds of Marcetia taxifolia (Melastomataceae). Flora 209:391–400. doi: 10.1016/j.flora.2014.06.004 CrossRefGoogle Scholar
  22. Ferreira BG, Álvarez R, Avritzer SC, Isaias RMS (2017) Revisiting the histological patterns of storage tissues: beyond the limits of gall-inducing taxa. Botany. doi: 10.1139/cjb-2016-0189 Google Scholar
  23. Fleury G, Ferreira BG, Oliveira DC, Soares GLG, Isaias RMS (2015) Elucidating the determination of the rosette galls induced by Pisphondylia brasiliensis Couri & Maia 1992 (Cecidomyiidae) on Guapira opposita (Vell.) Reitz (Nyctaginaceae). Aust J Bot 63:608–617CrossRefGoogle Scholar
  24. Isaias RMS (1998) Galhas entomógenas em Machaerium (Leguminosae- Papilionoidae): anatomia e histoquímica. Ph.D. thesis, Universidade de São PauloGoogle Scholar
  25. Isaias RMS, Carneiro RGS, Oliveira DC, Santos JC (2013) Illustrated and annotated checklist of brazilian gall morphotypes. Neotrop Entomol 42:230–239. doi: 10.1007/s13744-013-0115-7 CrossRefPubMedGoogle Scholar
  26. Isaias RMS, Oliveira DC, Moreira ASFP, Soares GLG, Carneiro RGS (2015) The imbalance of redox homeostasis in arthropod-induced plant galls: Mechanisms of stress generation and dissipation. Biochim Biophys Acta 18(50):1509–1517. doi: 10.1016/j.bbagen.2015.03.007 CrossRefGoogle Scholar
  27. Jackson MB, Armstrong A (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287. doi: 10.1111/j.1438-8677.1999.tb00253.x CrossRefGoogle Scholar
  28. Johansen DA (1940) Plant microtechnique. McGraw-Hill Book, New YorkGoogle Scholar
  29. Kostoff D, Kendall J (1929) Studies on the structure and development of certain Cynipid galls. Biol Bull 56:402–458CrossRefGoogle Scholar
  30. Kraus JE, Arduin M (1997) Manual Básico de métodos em morfologia vegetal. Seropédica, EDURGoogle Scholar
  31. Kraus JE, Sugiura HC, Cutrupi S (1996) Morfologia e ontogenia em galhas entomógenas de Guarea macrophylla subsp. Tuberculata (Meliaceae). Fitopatol Bras 21:349–356Google Scholar
  32. Kraus JE, Isaias RMS, Vecchi C, Fernandes GW (2003) Structure of insect galls on two sympatric subspecies of Chrysothamnus nauseosus (Pall. ex Pursh) Britton (Asteraceae). Bol Bot Univ São Paulo 21:251–263. doi: 10.11606/issn.2316-9052.v21i2p251-263 Google Scholar
  33. Maia VC (2013) Galhas de insetos em restingas da região sudeste do Brasil com novos registros. Biota Neotrop 13:183–209. doi: 10.1590/S1676-06032013000100021 CrossRefGoogle Scholar
  34. Maia VC, Oliveira JC (2010) Galhas de insetos da Reserva Biológica Estadual da Praia do Sul (Ilha Grande, Angra dos Reis, RJ). Biota Neotrop 10:227–237. doi: 10.1590/S1676-06032010000400028 CrossRefGoogle Scholar
  35. Maia VC, Magenta MAG, Martins SE (2008) Occurrence and characterization of insect galls at resting áreas of Bertioga (São Paulo, Brazil). Biota Neotrop 8:167–197. doi: 10.1590/s1676-06032008000100020 CrossRefGoogle Scholar
  36. Maia VC, Cardoso LJT, Braga JMA (2014) Insect galls from Atlantic Forest areas of Santa Teresa, Espírito Santo, Brazil: characterization and occurrence. Bol Mus Biol Mello Leitão 33:47–129Google Scholar
  37. Mani MS (1964) Ecology of plant galls. Dr. W. Junk, The HagueCrossRefGoogle Scholar
  38. Mauseth JD (1988) Plant anatomy. Benjamin/Cummings, Menlo ParkGoogle Scholar
  39. Mendonça Jr MS (2007) Plant diversity and galling arthropod diversity searching for taxonomic patterns in an animal–plant interaction in the neotropics. Bol Soc Argent Bot 42:347–357Google Scholar
  40. Meyer J (1987) Plant galls and gall inducers. Gebrüder Borntraeger, BerlinGoogle Scholar
  41. Milan P, Hayashi AH, Appezzato-da-Glória B (2006) Comparative leaf morphology and anatomy of three Asteraceae species. Braz Arch Biol Technol 49:135–144CrossRefGoogle Scholar
  42. Motta LB, Kraus JE, Salatino A, Salatino MLF (2005) Distribution of metabolites in galled and non-galled foliar tissues of Tibouchina pulchra. Biochem Syst Ecol 33:971–981. doi: 10.1016/j.bse.2005.02.004 CrossRefGoogle Scholar
  43. Moura MZD, Soares GLG, Isaias RMS (2008) Species-specific changes in tissue morphogenesis induced by two arthropod leaf gallers in Lantana camara L. (Verbenaceae). Aust J Bot 53:153–160CrossRefGoogle Scholar
  44. Nyman T (2000) Phylogeny and ecological evolution of gall-inducing sawflies (Hymenoptera: Tenthredinidae). Dissertation, University of JoensuuGoogle Scholar
  45. Oliveira DC, Isaias RMS (2010a) Redifferentiation of leaflet tissues during midrib gall development in Copaifera langsdorffii (Fabaceae). S Afr J Bot 76:239–248. doi: 10.1016/j.sajb.2009.10.011 CrossRefGoogle Scholar
  46. Oliveira DC, Isaias RMS (2010b) Cytological and histochemical gradients induced by a sucking insect in galls of Aspidosperma australe Arg. Muell (Apocynaceae). Plant Sci 178:350–358. doi: 10.1016/j.plantsci.2010.02.002 CrossRefGoogle Scholar
  47. Oliveira F, Alvarenga MA, Akisue MK (1984) Isolamento e identificação de componentes químicos de Mikania glomerata Sprengel e de Mikania laevigata Schultz Bip. Ex Baker. Rev Farm Bioquim Univ São Paulo 20:169–183Google Scholar
  48. Oliveira DC, Christiano JCS, Soares GLG, Isaias RMS (2006) Reações de defesa químicas e estruturais de Lonchocarpus muchlbergianus Hassl. (Fabaceae) à ação do galhador Eupharerus ostreoides Crowf. (Hemiptera: Psyllidae). Rev Bras Bot 20:657–667CrossRefGoogle Scholar
  49. Oliveira DC, Drummond MM, Moreira ASFP, Soares GLG, Isaias RMS (2008) Potencialidades morfogênicas de Copaifera langsdorffi Desf. (Fabaceae): superhospedeira de herbívoros galhadores. Rev Biol Neotrop 5:31–39. doi: 10.5216/rbn.v5i1.5625 Google Scholar
  50. Oliveira DC, Magalhães TA, Carneiro RGS, Alvim MN, Isaias RMS (2010) Do Cecidomyiidae galls of Aspidosperma spruceanum (Apocynaceae) fit the pre-established cytological and histochemical patterns? Protoplasma 242:81–93. doi: 10.1007/s00709-010-0128-6 CrossRefPubMedGoogle Scholar
  51. Oliveira DC, Isaias RMS, Fernandes GW, Ferreira BG, Carneiro RGS, Fuzaro L (2016) Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds. J Insect Physiol 84:103–113. doi: 10.1016/j.jinsphys.2015.11.012 CrossRefPubMedGoogle Scholar
  52. Paiva JGA (2006) Verniz vitral incolor 500®: uma alternativa de meio de montagem economicamente viável. Acta Bot Bras 20:257–264. doi: 10.1590/S0102-33062006000200002 CrossRefGoogle Scholar
  53. Price PW, Fernandes GW, Waring GL (1987) Adaptive nature of insect galls. Environ Entomol 16:15–24CrossRefGoogle Scholar
  54. Raman A (2011) Morphogenesis of insect-induced plant galls: facts and questions. Flora 206:517–533. doi: 10.1016/j.flora.2010.08.004 CrossRefGoogle Scholar
  55. Raman A, Madhavan S, Florentine SK, Dhileepan K (2006) Metabolite mobilization in the stem galls of Parthenium hysterophorus induced by Epiblema strenuana inferred from signatures of isotopic carbon and nitrogen and concentrations of total non-structural carbohydrates. Entomol Exp Appl 119:101–107. doi: 10.1111/j.1570-7458.2006.00403.x CrossRefGoogle Scholar
  56. Redfern M, Askew RR (1992) Plant galls. Richmond Publishing Co, EnglandGoogle Scholar
  57. Ritter RM, Waechter JL (2004) Biogeografia do genero Mikania Willd. (Asteraceae) no Rio Grande do Sul, Brasil. Acta Bot Bras 18:643–652. doi: 10.1590/S0102-33062004000300021 CrossRefGoogle Scholar
  58. Ritter MR, Miotto TS (2005) Taxonomia de Mikania Willd. (Asteraceae) no Rio Grande do Sul, Brasil. Hoehnea 32(3):309–359Google Scholar
  59. Rohfritsch O (1992) Patterns in gall development. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 60–86Google Scholar
  60. Sass JE (1951) Botanical microtechnique, 2nd edn. Iowa State College Press, AmesGoogle Scholar
  61. Soares GLG, Isaias RMS, Gonçalves SJMR, Christiano JCS (2000) Alterações químicas induzidas por coccideos galhadores (Coccoidea: Brachyscelidae) em folhas de Rollinia laurifolia Schdtl. (Annonaceae). Rev Bras Zoociências 2:103–116Google Scholar
  62. Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 18:512–522. doi: 10.1016/S0169-5347(03)00247-7 CrossRefGoogle Scholar
  63. Ventrella MC, Almeida AL, Nery LA, Coelho VPM (2013) Métodos histoquímicos aplicados às sementes. Editora UFV, ViçosaGoogle Scholar
  64. Wang G, Tian L, Aziz N, Broun P, Dai X, He J et al (2008) Terpene biosynthesis in glandular trichomes of hop. Plant Physiol 148:1254–1266. doi: 10.1104/pp.108.125187 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wells BW (1920) Early Stages in the development of certain Pachypsylla galls on Celtis. Am J Bot 7:275–285CrossRefGoogle Scholar
  66. Yoder LR, Mahlberg PG (1976) Reactions of alkaloid and histochemical indicators in laticifers and specialized parenchyma cells of Catharanthus roseus (Apocynaceae). Am J Bot 63:1167–1173CrossRefGoogle Scholar

Copyright information

© Botanical Society of Sao Paulo 2017

Authors and Affiliations

  1. 1.Universidade do Estado de Minas Gerais (UEMG – Divinópolis)DivinópolisBrazil
  2. 2.Dept. Botânica, Instituto de Ciências BiológicasUniversidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil

Personalised recommendations