Brazilian Journal of Botany

, Volume 40, Issue 2, pp 451–461 | Cite as

Soil controls biomass and dynamics of an Amazonian forest through the shifting of species and traits

  • José Julio Toledo
  • Carolina V. Castilho
  • William E. Magnusson
  • Henrique E. M. Nascimento
Original Article
  • 140 Downloads

Abstract

The effects of soil on tree species composition and trait distributions in tropical forest, and how these interactions affect tree biomass and dynamics, are poorly understood because variation in soil is confounded with variation in climate over large areas. We excluded confounding due to climate by studying variation among 72 1-ha plots within 64 km2, and minimized within-plot variation in soil and stand properties by using long narrow plots oriented along altitudinal contours in Reserva Ducke, Central Amazonia, Brazil. Soil variation caused shifts in tree species composition, which determined stand-level wood density. Soil clay content, cation exchange capacity, plot mean wood density and one-dimensional ordination of tree species composition explained about 40% of variation in tree biomass, 24% of variation in tree mortality and 18% of variation in coarse wood production. As pioneer species were not abundant, lower biomass and higher mortality on sandy soils is a consequence of dominance of species with low to medium wood density adapted to waterlogged and nutrient-poor sandy soils. Therefore, mesoscale variation in biomass and dynamics is caused by co-occurrence of species with similar traits in different parts of the edaphic gradient. Identification of mechanisms controlling tree biomass and dynamics in Amazonian forest will require better understanding of tree–soil physiologic interactions.

Keywords

Central Amazonia Coarse wood production Functional traits Mesoscale variation Tree mortality Wood density 

Notes

Acknowledgements

JJT received a fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) through the Post-Doctorate National Program (PNPD) during manuscript elaboration. Financial support was provided by the Gordon & Betty Moore Foundation through Programa BECA—IEB (B/2006/01/BDP/04), CNPq/Universal (473989/2006-9) and the Brazilian Long-Term Ecological Research Program (CNPq/PELD #520039/98-0). Logistical support was provided by PELD, INPA and Brazilian Biodiversity Research Program (PPBio). We thank José S. Lopez, Oscinei S. Monteiro, F. Helena Aguiar and Paulo R. Pinto for help with field work. Data repositories are maintained by PPBio, PELD and the National Institute of Science and Technology for Amazonian Biodiversity (ICNT—CENBAM).]

Supplementary material

40415_2016_351_MOESM1_ESM.pdf (143 kb)
Supplementary material 1 (PDF 143 kb)
40415_2016_351_MOESM2_ESM.pdf (36 kb)
Supplementary material 2 (PDF 36 kb)
40415_2016_351_MOESM3_ESM.pdf (35 kb)
Supplementary material 3 (PDF 36 kb)
40415_2016_351_MOESM4_ESM.pdf (42 kb)
Supplementary material 4 (PDF 41 kb)
40415_2016_351_MOESM5_ESM.pdf (59 kb)
Supplementary material 5 (PDF 60 kb)
40415_2016_351_MOESM6_ESM.pdf (16 kb)
Supplementary material 6 (PDF 16 kb)

References

  1. Anten NPR, Schieving F (2010) The role of wood mass density and mechanical constraints in the economy of tree architecture. Am Nat 175:250–260CrossRefPubMedGoogle Scholar
  2. Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Lloyd J, Monteagudo A, Neill DA, Patiño S, Pitman NCA, Silva JNM, Martinez RV (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob Change Biol 10:545–562CrossRefGoogle Scholar
  3. Baker TR, Phillips OL, Laurance WF, Pitman NCA, Almeida S, Arroyo L, Di Fiore A, Erwin T, Higuchi N, Killeen TJ, Laurance SG, Nascimento H, Monteagudo A, Neill DA, Silva JNM, Malhi Y, López Gonzalez G, Peacock J, Quesada CA, Lewis SL, Lloyd J (2009) Do species traits determine patterns of wood production in Amazonian forests? Biogeosciences 6:297–307CrossRefGoogle Scholar
  4. Baraloto C, Rabaud S, Molto Q, Hérault B, Blanc L, Fortunel C, Davila N, Mesones I, Rios M, Valderrama E, Fine PVA (2011) Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests. Glob Change Biol 17:2677–2688CrossRefGoogle Scholar
  5. Castilho CV, Magnusson WE, Araújo RNO, Luizão RCC, Luizão FJ, Lima AP, Higuchi N (2006) Variation in aboveground tree live biomass in a Central Amazonian forest: effects of soil and topography. For Ecol Manag 234:85–96CrossRefGoogle Scholar
  6. Castilho CV, Magnusson WE, Araújo RNO, Luizão FJ (2010) Short-term temporal changes in tree live biomass in a Central Amazonian forest, Brazil. Biotropica 42:95–103CrossRefGoogle Scholar
  7. Chao KJ, Phillips OL, Gloor E, Monteagudo A, Torres-Lezama A, Martinez RV (2008) Growth and wood density predict tree mortality in Amazon forests. J Ecol 96:281–292CrossRefGoogle Scholar
  8. Chao KJ, Phillips OL, Monteagudo A, Torres-Lezama A, Martinez RV (2009) How do trees die? Mode of death in northern Amazonia. J Veg Sci 20:260–268CrossRefGoogle Scholar
  9. Chauvel A, Lucas Y, Boulet R (1987) On the genesis of the soil mantle of the region of Manaus, Central Amazonia, Brazil. Experientia 43:234–241CrossRefGoogle Scholar
  10. Chave J, Muller-Landau HC, Baker TR, Easdale TA, ter Steege H, Webb CO (2006) Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl 16:2356–2367CrossRefPubMedGoogle Scholar
  11. Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366CrossRefPubMedGoogle Scholar
  12. Chave J, Rejou-Mechain M, Burquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martinez-Yrizar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pelissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20:3177–3190CrossRefGoogle Scholar
  13. Clark DB, Palmer MW, Clark DA (1999) Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology 80:2662–2675CrossRefGoogle Scholar
  14. Condit R, Hubbell SP, Foster RB (1995) Mortality rates of 205 Neotropical tree and shrub species and the impact of a severe drought. Ecol Monogr 65:419–439CrossRefGoogle Scholar
  15. Condit R, Aguilar S, Hernandez A, Perez R, Lao S, Angehr G, Hubbell SP, Foster RB (2004) Tropical forest dynamics across a rainfall gradient and the impact of an El Nino dry season. J Trop Ecol 20:51–72CrossRefGoogle Scholar
  16. Costa FRC, Guillaumet JL, Lima AP, Pereira OS (2009) Gradients within gradients: the mesoscale distribution patterns of palms in a central Amazonian forest. J Veg Sci 20:69–78CrossRefGoogle Scholar
  17. EMBRAPA (2006) Sistema brasileiro de classificação de solos, 2nd edn. EMBRAPA-SPI, Rio de JaneiroGoogle Scholar
  18. Engelbrecht BMJ, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, Hubbell SP (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:80–82CrossRefPubMedGoogle Scholar
  19. Ferry B, Morneau F, Bontemps JD, Blanc L, Freycon V (2010) Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest. J Ecol 98:106–116CrossRefGoogle Scholar
  20. Hacke UG, Sperry JS, Pckman WT, Davis SD, McCulloch KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461CrossRefPubMedGoogle Scholar
  21. Jacobsen AL, Ewers FW, Pratt RB, Paddock WA III, Davis SD (2005) Do xylem fibers affect vessel cavitation resistance? Plant Physiol 139:546–556CrossRefPubMedPubMedCentralGoogle Scholar
  22. John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo N, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci USA 104:864–869CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kraft NJB, Metz MR, Condit RS, Chave J (2010) The relationship between wood density and mortality in a global tropical forest data set. New Phytol 188:1124–1136CrossRefPubMedGoogle Scholar
  24. Larjavaara M, Muller-Landau HC (2010) Rethinking the value of high wood density. Funct Ecol 24:701–705CrossRefGoogle Scholar
  25. Magnusson WE, Lima AP, Luizão RCC, Luizão FJ, Costa FRC, Castilho CV, Kinupp VF (2005) RAPELD: a modification of the Gentry method for biodiversity surveys in long-term ecological research sites. Biota Neotrop 5:1–6CrossRefGoogle Scholar
  26. Malhi Y, Baker TR, Phillips OL, Almeida S, Alvarez E, Arroyo L, Chave J, Czimczik CI, Fiore AD, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Montoya LMM, Monteagudo A, Neill DA, Vargas PN, Patiño S, Pitman NCA, Quesada CA, Salomão R, Silva JNM, Lezama AT, Martínez RV, Terborgh J, Vinceti B, Lloyd J (2004) The above-ground coarse wood productivity of 104 Neotropical forest plots. Glob Change Biol 10:563–591CrossRefGoogle Scholar
  27. Mathieu C, Pieltain F (1998) Analyse physique des sols: méthodes choisies. Lavoisier Tec & Doc, ParisGoogle Scholar
  28. Melo JE, Coradin VTR, Mendes JC (1990) Classes de densidade de madeira para a Amazônia Brasileira. Anais do Congresso Florestal Brasileiro 6, vol. 3, Campos do Jordão, São Paulo, Sociedade Brasileira de Silvicultura, São Paulo, SP, Brazil, pp 695–699Google Scholar
  29. Nascimento HEM, Laurance WF, Condit R, Laurance SG, D’Angelo S, Andrade AC (2005) Demographic and life-history correlates for Amazonian trees. J Veg Sci 16:625–634CrossRefGoogle Scholar
  30. Nelson WL, Mehlich A, Winters E (1953) The development, evaluation and use of soil tests for phosphorus availability. In: Pierre WH, Norman AF (eds) Soil and fertilizers, phosphorus in crop nutrition. Academic Press, New York, pp 153–188Google Scholar
  31. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) vegan: Community Ecology Package. R package version 2.0-1. http://CRAN.R-project.org/package=vegan
  32. Phillips OL, Baker T, Arroyo L, Higuchi N, Killeen T, Laurance WF, Lewis SL, Lloyd J, Malhi Y, Monteagudo A, Neill D, Nuñez-Vargas P, Silva N, Terborgh J, Vásquez Martínez R, Alexiades M, Almeida S, Brown S, Chave J, Comiskey JA, Czimczik CI, Di Fiore A, Erwin T, Kuebler C, Laurance SG, Nascimento HEM, Olivier J, Palacios W, Patiño S, Pitman N, Quesada CA, Saldias M, Torres Lezama A, Vinceti B (2004) Pattern and process in Amazon tree turnover, 1976–2001. Phil Trans R Soc Lond B Biol Sci 359:381–407CrossRefGoogle Scholar
  33. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2009) nlme: Linear and nonlinear mixed effects models. R package version 3.1-96, http://CRAN.R-project.org/package=nlme
  34. Quesada CA, Lloyd J, Schwarz M, Patiño S, Baker TR, Czimczik C, Fyllas NM, Martinelli L, Nardoto GB, Schmerler J, Santos AJB, Hodnett MG, Herrera R, Luizão FJ, Arneth A, Lloyd G, Dezzeo N, Hilke I, Kuhlmann I, Raessler M, Brand WA, Geilmann H, Moraes Filho JO, Carvalho FP, Araujo Filho RN, Chaves JE, Cruz Junior OF, Pimentel TP, Paiva R (2010) Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7:1515–1541CrossRefGoogle Scholar
  35. Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimczik CI (2011) Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8:1415–1440CrossRefGoogle Scholar
  36. Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, Patiño S, Fyllas NM, Hodnett MG, Herrera R, Almeida S, Alvarez Dávila E, Arneth A, Arroy L, Chao KJ, Dezzeo N, Erwin T, di Fiore A, Higuchi N, Honorio Coronado E, Jimenez EM, Killeen T, Lezama AT, Lloyd G, López-González G, Luizão FJ, Malhi Y, Monteagudo A, Neill DA, Núñez Vargas P, Paiva R, Peacock J, Peñuela MC, Peña Cruz A, Pitman N, Priante Filho N, Prieto A, Ramírez H, Rudas A, Salomão R, Santos AJB, Schmerler J, Silva N, Silveira M, Vásquez R, Vieira I, Terborgh J, Lloyd J (2012) Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9:2203–2246CrossRefGoogle Scholar
  37. Ribeiro JELS, Hopkins MG, Vicentini A, Sothers CA, Costa MAS, Brito JM, Souza MAD, Martins LHP, Lohmann LG, Assunção PACL, Pereira EC, Silva CF, Mesquita MR, Procópio L (1999) Flora da Reserva Ducke: guia de identificação das plantas vasculares de uma floresta de terra firme na Amazônia Central. INPA - UFAM, ManausGoogle Scholar
  38. Romero C, Bolker BM (2008) Effects of stem anatomical and structural traits on responses to stem damage: an experimental study in the Bolivian Amazon. Can J For Res 38:611–618CrossRefGoogle Scholar
  39. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org
  40. Schietti J, Emilio T, Rennó CD, Drucker DP, Costa FRC, Nogueira A, Baccaro FB, Figueiredo FB, Castilho CV, Kinnup V, Guillaumet JL, Garcia ARM, Lima AP, Magnusson WE (2014) Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Plant Ecol Divers 7:241–253CrossRefGoogle Scholar
  41. Sheil D, Burslem DFRP, Alder D (1995) The interpretation and misinterpretation of mortality rate measures. J Ecol 83:331–333CrossRefGoogle Scholar
  42. Siddique I, Vieira ICG, Schmidt S, Lamb D, Carvalho CJR, Figueiredo RO, Blomberg S, Davidson EA (2010) Nitrogen and phosphorus additions negatively affect tree species diversity in tropical forest regrowth trajectories. Ecology 91:2121–2131CrossRefPubMedGoogle Scholar
  43. ter Steege H, Hammond DS (2001) Character convergence, diversity, and disturbance in tropical rain forest in Guyana. Ecology 82:3197–3212CrossRefGoogle Scholar
  44. ter Steege H, Pitman NCA, Phillips OL, Chave J, Sabatier D, Duque A, Molino JF, Prevost MF, Spichiger R, Castellanos H, von Hildebrand P, Vasquez R (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447CrossRefPubMedGoogle Scholar
  45. Toledo JJ, Magnusson WE, Castilho CV, Nascimento HEM (2011) How much variation in tree mortality is predicted by soil and topography in Central Amazonia? For Ecol Manag 262:331–338CrossRefGoogle Scholar
  46. Toledo JJ, Magnusson WE, Castilho CV, Nascimento HEM (2012) Tree mode of death in Central Amazonia: effects of soil and topography on tree mortality associated with storm disturbances. For Ecol Manag 263:253–261CrossRefGoogle Scholar
  47. Valencia R, Foster RB, Villa G, Condit R, Svenning J, Hernandez C, Romoleroux K, Losos E, Magard E, Balslev H (2004) Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. J Ecol 92:214–229CrossRefGoogle Scholar
  48. Wright SJ, Yavitt JB, Wurzburger N (2011) Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92:1616–1625CrossRefPubMedGoogle Scholar
  49. Young TP, Perkocha V (1994) Treefalls, crown asymmetry, and buttresses. J Ecol 82:319–324CrossRefGoogle Scholar
  50. Zanne AE, Lopez-Gonzalez G, Coomes D, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J (2009) Data from: towards a worldwide wood economics spectrum. Dryad Digit Repos. doi: 10.5061/dryad.234 Google Scholar

Copyright information

© Botanical Society of Sao Paulo 2016

Authors and Affiliations

  • José Julio Toledo
    • 1
  • Carolina V. Castilho
    • 2
  • William E. Magnusson
    • 3
  • Henrique E. M. Nascimento
    • 3
  1. 1.Universidade Federal do AmapáMacapáBrazil
  2. 2.Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA, Centro de Pesquisa Agroflorestal de RoraimaBoa VistaBrazil
  3. 3.Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia - INPAManausBrazil

Personalised recommendations