Brazilian Journal of Botany

, Volume 40, Issue 2, pp 503–516 | Cite as

Leaf and stem anatomy and essential oil composition of four Brazilian Aldama species (Asteraceae) and their taxonomic significance

  • Arinawa Liz Filartiga
  • Aline Bertolosi Bombo
  • Vera Lúcia Garcia
  • Beatriz Appezzato-da-Glória
Original Article

Abstract

Aldama La Llave is one of several Asteraceae genera that pose phylogenetic problems. The close similarity between species, as well as the inconsistencies found in the most recent phylogenetic analysis, shows that new data are needed to help delimit group species. Aldama anchusifolia (DC) E.E.Schill. & Panero, Aldama megapotamica (Malme) Magenta & Pirani, Aldama nudibasilaris (S.F.Blake) E.E.Schill. & Panero and Aldama pilosa (Baker) E.E.Schill. & Panero are difficult to identify because they are very closely related. Therefore, the aim of this study was to detect anatomical and phytochemical characteristics to help elucidate phylogenetic issues raised by Aldama. Aerial vegetative organs were prepared using the standard histological techniques. Essential oils were obtained by hydrodistillation, and their components identified using a gas chromatograph coupled to a mass spectrometer and flame ionization detector. Each species presented a set of unique leaf and stem anatomical features. The front view of the epidermal cell walls in the leaves, the presence of secretory ducts in the phloem and medulla sclerification in the stems proved useful in delimiting these species. The essential oils were characterized by the predominance of sesquiterpenes such as t-caryophyllene, germacrene D and bicyclogermacrene. Some unique constituents in each species were also identified as potential chemical markers.

Keywords

Compositae Fructan Secretory duct Socket cells Terpenes 

Notes

Acknowledgements

We thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the Grant (Proc. No. 303715/2014-6) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for providing financial support (Thematic project Proc. No. 2010/51454-3) and for the Grants to the first (2012/02476-0) and second (2012/01586-6) authors. We would also like to thank Professor Mara Angelina Galvão Magenta for species identification.

References

  1. Abdalla DF, Moraes MG, Rezende MH, Hayashi AH, Carvalho MAM (2016) Morpho-anatomy and fructans in the underground system of Apopyros warmingii and Ichthyothere terminalis (Asteraceae) from the cerrado rupestre. J Torrey Bot Soc 143:69–86CrossRefGoogle Scholar
  2. Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry, 4th edn. Allured Publishing Corporation, USAGoogle Scholar
  3. Adedeijo O, Jewoola OA (2008) Importance of leaf epidermal characters in the Asteraceae family. Not Bot Hortic Agrobot Cluj-Napoca 36:7–16Google Scholar
  4. Agostini F, Santos ACA, Rossato M, Pansera MR, Zattera F, Wasum R, Serfini LA (2005) Estudo do óleo essencial de algumas espécies do gênero Baccharis (Asteraceae) do sul do Brasil. Rev Bras Farmacogn 15:215–220CrossRefGoogle Scholar
  5. Alvarenga SAV, Ferreira MJP, Rodrigues GV, Emerenciano VP (2005) A general survey and some taxonomic implications of diterpenes in the Asteraceae. Bot J Linn Soc 147:291–308CrossRefGoogle Scholar
  6. Ambrosio SR, Tirapelli CR, Bonaventura D, Oliveira AM, Da Costa FB (2002) Pimarane diterpene from Viguiera arenaria (Asteraceae) inhibit rat carotid contraction. Fitoterapia 73:484–489CrossRefPubMedGoogle Scholar
  7. Ambrosio SR, Schoorr K, Da Costa FB (2004) Terpenoids of Viguiera arenaria (Asteraceae). Biochem Syst Ecol 32:221–224CrossRefGoogle Scholar
  8. Ambrosio SR, Tirapelli CR, Da Costa FB, Oliveira AM (2006) Kaurane and pimarane-type Diterpenes from the Viguiera species inhibit vascular smooth muscle contractility. Life Sci 79:925–933CrossRefPubMedGoogle Scholar
  9. Appezzato-da-Glória B, Hayashi AH, Cury G, Soares MKM, Rocha R (2008) Occurrence of secretory structures in underground systems of seven Asteraceae species. Bot J Linn Soc 157:789–796CrossRefGoogle Scholar
  10. Bombo AB, Oliveira TS, Oliveira ASS, Rehder VLG, Magenta MAG, Appezzato-da-Glória B (2012) Anatomy and essential oils from aerial organs in three species of Aldama (Asteraceae–Heliantheae) that have a difficult delimitation. Aust J Bot 60:632–642CrossRefGoogle Scholar
  11. Bombo AB, Oliveira TS, Santos AAS, Rehder VLG, Appezzato-da-Glória B (2014) Anatomy and essential oil composition of the underground systems of three species of Aldama La Llave (Asteraceae). J Torrey Bot Soc 141:115–125CrossRefGoogle Scholar
  12. Bukatsch F (1972) Bemerkungen zur Doppelfärbung: Astrablau-Safranin. Mikrokosmos 61:255Google Scholar
  13. Canales M, Rodríguez-Monroy MA, Jiménez-Estrada M, Flores CM, Hernández LB, Gijón IC, Quiroz S, García AM, Ávila G (2008) Antimicrobial activity of the extracts and essential oil of Viguiera dentata. Pharm Biol 46:719–723CrossRefGoogle Scholar
  14. Carvalho TC, Simão MR, Ambrosio SR, Furtado NA, Veneziani RC, Heleno VC, Da Costa FB, Gomes BP, Souza MG, Borges dos Reis E, Martins CH (2011) Antimicrobial activity of diterpenes from Viguiera arenaria against endodontic bacteria. Molecules 16:543–551CrossRefPubMedGoogle Scholar
  15. Castro MM, Leitão Filho HF, Monteiro WR (1997) Utilização de estruturas secretoras na identificação dos gêneros de Asteraceae de uma vegetação de Cerrado. Rev Bras Bot 20:163–174CrossRefGoogle Scholar
  16. Chagas-Paula DA, Oliveira RB, Rocha BA, Da Costa FB (2012) Ethnobotany, chemistry, and biological activities of the genus Tithonia (Asteraceae). Chem Biodivers 9:210–235CrossRefPubMedGoogle Scholar
  17. Clifford SC, Arndt SK, Popp M, Jones HG (2002) Mucilages and polysaccharides in Ziziphus species (Rhamnaceae): localization, composition and physiological roles during drought-stress. J Exp Bot 53:131–138PubMedGoogle Scholar
  18. Constantin MB, Sartorelli P, Limberger R, Henriques AT, Steppe M, Ferreira MJP, Ohara MT, Emerenciano VP, Kato MJ (2001) Essential oils from Piper cernuum and Piper regnellii: antimicrobial activities and analysis by CG/MS and C-NMR. Planta Med 63:771–773CrossRefGoogle Scholar
  19. Cornara L, Bononi M, Tateo E, Serrato-Valenti G, Mariotti MG (2001) Trichomes on vegetative and reproductive organs of Stevia rebaudiana (Asteraceae). Structure and secretory products. Plant Biosyst 135:25–37CrossRefGoogle Scholar
  20. Da Costa FB, Vichnewski W, Herz W (1996) Constituents of Viguiera aspillioides and V. robusta. Biochem Syst Ecol 24:585–587CrossRefGoogle Scholar
  21. Da Costa FB, Shorr K, Arakawa NS, Shilling EE, Spring O (2001) Infraspecific variation in the chemistry of glandular trichomes of two Brazilian Viguiera species (Heliantheae, Asteraceae). J Braz Chem Soc 12:403–407CrossRefGoogle Scholar
  22. David R, Carde JP (1964) Coloration différentielle dês inclusions lipidique et terpeniques dês pseudophylles du Pin maritime au moyen du reactif Nadi. C R Hebd Séances Acad Sci Paris 258:1338–1340Google Scholar
  23. Erdtman H (1963) Some aspects of chemotaxonomy. In: Swain T (ed) Chemical plant taxonomy. Academic Press, London, pp 89–125CrossRefGoogle Scholar
  24. Evert R (2006) Epidermis. In: Evert R (ed) Esau’s Plant Anatomy: meristems, cells, and tissues of the plant body—their structure, function and development. Wiley, Hoboken, pp 211–253CrossRefGoogle Scholar
  25. Fahn A (1979) Secretory Tissues in Plants. Academic Press, LondonGoogle Scholar
  26. Fahn A (2000) Structure and function of secretory cells. Adv Bot Res 31:37–75CrossRefGoogle Scholar
  27. Figueiredo-Ribeiro RCL (1993) Distribuição, aspectos estruturais e funcionais dos frutanos, com ênfase em plantas herbáceas do Cerrado. Braz J Plant Physiol 5:203–208Google Scholar
  28. Gershenzon J, Mcconkey ME, Croteau RB (2000) Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiol 122:205–213CrossRefPubMedPubMedCentralGoogle Scholar
  29. Godinho LS, Aleixo de Carvalho LS, Barbosa de Castro CC, Dias MM, Pinto PF, Crotti AEM, Pinto PLS, de Moraes J, da Silva Filho AA (2014) Anthelmintic activity of crude extract and essential oil of Tanacetum vulgare (Asteraceae) against adult worms of Schistosoma mansoni. Sci World J 2014:1–9CrossRefGoogle Scholar
  30. Heinrich G, Pfeifhofer HW, Stabentheiner E, Sawidis T (2002) Glandular hairs of Sigesbeckia jorullensis Kunth (Asteraceae): morphology, histochemistry and composition of essential oil. Ann Bot 89:459–469CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hendry G (1987) The ecological significance of fructan in a contemporary flora. New Phytol 106:201–216CrossRefGoogle Scholar
  32. Horridge GA, Tamm SL (1969) Critical point drying for scanning electron microscopy study of ciliary motion. Science 163:817–818CrossRefPubMedGoogle Scholar
  33. Jensen WA (1962) Botanical histochemistry: principle ad practice. W.H. Freeman, San FranciscoGoogle Scholar
  34. Johansen DA (1940) Plant microtechnique. McGraw-Hill Book, New YorkGoogle Scholar
  35. Kakrani HK, Kalyani GA, Balaidavar GP, Satyanarayana D, Manvi FV (1991) Pharmacognostical studies on the leaves of Commiphora mukul hook ex stocks. Anc Sci Life 10:165–171PubMedPubMedCentralGoogle Scholar
  36. Karnovsky MJ (1965) A formaldehyde–glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137–138Google Scholar
  37. Kelsey RG (1984) Glandular trichomes: a helpful taxonomic character of Artemisia nova (black sagebrush). J Range Manag 37:370–372CrossRefGoogle Scholar
  38. Magenta MAG. 2006. Viguiera Kunth (Asteraceae–Heliantheae) na América do Sul e sistemática das espécies do Brasil. Tese de doutorado, Universidade de São Paulo, São PauloGoogle Scholar
  39. Magenta MAG, Pirani JR (2014) Novidades taxonômicas em Aldama (Asteraceae-Heliantheae). Rodriguésia 65:175–192CrossRefGoogle Scholar
  40. Maia AIV, Torres MCM, Pessoa ODL, Menezes JESA, Costa SMO, Nogueira VLR, Melo VMM, Souza EB, Cavalcante MGB, Albuquerque MRJR (2010) Óleos essenciais das folhas de Vernonia remotiflora e Vernonia brasiliana: composição química e atividade biológica. Quim Nova 33:584–586CrossRefGoogle Scholar
  41. Meragelman TL, Silva GL, Mongelli E, Gil RR (2003) ent-Pimarane type diterpenes from Gnaphalium gaudichaudianum. Phytochemistry 62:569–572CrossRefPubMedGoogle Scholar
  42. Metcalfe CR, Chalk L (eds) (1979) Anatomy of the dicotyledons. Systematic anatomy of leaf and stem, with a brief history of the subject. Clarendon Press, OxfordGoogle Scholar
  43. Moraes MG, Carvalho MAM, Franco AC, Pollock CJ, Figueiredo-Ribeiro RCL (2016) Fire and drought: soluble carbohydrate storage and survival mechanisms in herbaceous plants from the Cerrado. Bioscience 66:107–117Google Scholar
  44. Oliveira TS, Bombo AB, Appezzato-da-Glória B (2013) Anatomy of vegetative organs with an emphasis on the secretory structure of two species of Aldama (Asteraceae–Heliantheae). Botany 91:335–342CrossRefGoogle Scholar
  45. Pearse AGE (1968) Histochemistry, 3rd edn. A. Churchill, LondonGoogle Scholar
  46. Pontis HG (1989) Fructans and cold stress. J Plant Physiol 134:148–150CrossRefGoogle Scholar
  47. Portes MT, Figueiredo-Ribeiro RCL, Carvalho MAM (2008) Low temperature and defoliation affect fructan-metabolizing enzymes in different regions of the rhizophores of Vernonia herbacea. J Plant Physiol 165:1572–1581CrossRefPubMedGoogle Scholar
  48. Sakai WS (1973) Simple method for differential staining of paraffin embedded plant material using toluidine blue. Stain Technol 48:247–248CrossRefPubMedGoogle Scholar
  49. Schilling EE, Jansen RK (1989) Restriction fragment analysis of chloroplast DNA and the systematics of Viguiera and related genera (Asteraceae–Heliantheae). Am J Bot 76:1769–1778CrossRefGoogle Scholar
  50. Schilling EE, Panero JL (1996) Phylogenetic reticulation in subtribe Helianthinae. Am J Bot 83:939–948CrossRefGoogle Scholar
  51. Schilling EE, Panero JL (2011) A revised classification of subtribe Helianthinae (Asteraceae: Heliantheae) II. Derived lineages. Bot J Linn Soc 167(311):331Google Scholar
  52. Schilling EE, Da Costa FB, Lopes NP, Heise PJ (2000) Brazilian species of Viguiera (Asteraceae) exhibit low levels of its sequence variation. J Bot 57:323–332Google Scholar
  53. Sheue CR, Yang Y, Kuo-huang L (2003) Altitudinal variation of resin ducts in Pinus taiwanensis Hayata (Pinaceae) needles. Bot Bull Acad Sin 44:305–313Google Scholar
  54. Silva L, Oniki GH, Agripino DG, Moreno PRH, Young MCM, Mayworm MAS, Ladeira AM (2007) Biciclogermacreno, resveratrol e atividade antifúngica em extratos de folhas de Cissus verticillata (L.) Nicolson & Jarvis (Vitaceae). Rev Bras Farmacogn 17:361–367CrossRefGoogle Scholar
  55. Silva EMS, Hayashi AH, Appezzato-da-Glória B (2014) Anatomy of vegetative organs in Aldama tenuifolia and A. kunthiana (Asteraceae: Heliantheae). Braz J Bot 37:505–517CrossRefGoogle Scholar
  56. Silva TM, Vilhalva DAA, Moraes MG, Figueiredo-Ribeiro RC (2015) Anatomy and fructans distribution in vegetative organs of Dimerostema vestitum (Asteraceae) from the Campos Rupestres. Anais Acad Bras Ciênc 87:797–812CrossRefGoogle Scholar
  57. Souza TJT, Apel MA, Bordignon S, Matzenbacher NI, Zuanazzi JAS, Henriques AT (2007) Composição química e atividade antioxidante do óleo volátil de Eupatorium polystachyum DC. Rev Bras Farmacogn 17:368–372CrossRefGoogle Scholar
  58. Spring O, Zipper R, Reeb S, Vogler B, Da Costa FB (2003) Sesquiterpenes lactones and a myoinositol from glandular trichomes of Viguiera quinqueremis (Heliantheae, Asteraceae). Phytochemistry 57:267–272CrossRefGoogle Scholar
  59. Strasburger E (1913) Handbook of practical botany, 7th edn. George Allen, LondonGoogle Scholar
  60. Thompson KA, Sora DM, Cross KS, Germain JM, Cottenie K (2014) Mucilage reduces leaf herbivory in Schreber’s watershield, Brasenia schreberi J.F. Gmel. (Cabombaceae). Botany 92:412–416CrossRefGoogle Scholar
  61. Tirapelli CR, Ambrosio SR, Da Costa FB, Oliveira AM (2002) Inhibitory action of kaurenoic acid from Viguiera robusta (Asteraceae) on phenylephrine-induced rat carotid contraction. Fitoterapia 73:56–62CrossRefPubMedGoogle Scholar
  62. Valério DAR, Cunha TM, Arakawa NS, Lemos HP, Da Costa FB, Parada CA, Ferreira SH, Cunha FQ, Verri WA (2007) Anti-inflammatory and analgesic effects of the sesquiterpene lactone budlein A in mice: inhibition of cytokine production-dependent mechanism. Eur J Pharmacol 562:155–163CrossRefPubMedGoogle Scholar
  63. Valluru R, Van Den Ende W (2008) Plant fructans in stress environments: emerging concepts and future prospects. J Exp Bot 59:2905–2916CrossRefPubMedGoogle Scholar
  64. Vijn I, Smeekens S (1999) Fructan: more than a reserve carbohydrate? Plant Physiol 120:351–359CrossRefPubMedPubMedCentralGoogle Scholar
  65. Vilhalva AA, Cortelazzo A, Carvalho AL, Figueiredo-Ribeiro L (2011) Histochemistry and ultrastructure of Campuloclinium chlorolepis (Asteraceae) tuberous roots accumulating fructan: evidences of functions other than reserve carbohydrate. Aust J Bot 59:46–52CrossRefGoogle Scholar
  66. Westhoff M, Zimmermann D, Zimmermann G, Gessner P, Wegner LH, Bentrup FW, Zimmermann U (2009) Distribution and function of epistomatal mucilage plugs. Protoplasma 235:101–105CrossRefPubMedGoogle Scholar
  67. Zimmermann D, Westhoff M, Geßner P, Gessner A, Gessner A, Wegner LH, Rokitta M, Ache P, Schneider H, Vásquez JA, Kruck W, Shirley S, Jakob P, Hedrich R, Bentrup FW, Bamberg E, Zimmermann U (2007) Foliar water supply of tall trees: evidence for mucilage-facilitated moisture uptake from the atmosphere and the impact on pressure bomb measurements. Protoplasma 232:11–34CrossRefPubMedGoogle Scholar

Copyright information

© Botanical Society of Sao Paulo 2016

Authors and Affiliations

  1. 1.Departamento de Ciências Biológicas, Escola Superior de Agricultura ‘Luiz de Queiroz’Universidade de São PauloPiracicabaBrazil
  2. 2.Divisão de Química Orgânica e Farmacêutica, Centro de Pesquisas Químicas, Biológicas e Agrícolas, CPQBAUniversidade Estadual de CampinasPaulíniaBrazil

Personalised recommendations